【题目】如图,在ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)连接DE,若AD=2AB,求证:DE⊥AF.
![]()
参考答案:
【答案】(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)由在ABCD中,E是BC的中点,利用ASA,即可判定△ABE≌△FCE,继而证得结论;
(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三线合一,证得结论.
试题解析:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,∵∠ABE=∠FCE,BE=CE,∠AEB=∠CEF,∴△ABE≌△FCE(ASA),∴AB=FC;
(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中∠C=90°,线段AD是△ABC的角平分线,直线DE是线段AB的垂直平分线.若DE=1cm,DB=2cm,AC=
cm.求点C到直线AD的距离. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】方程x2=64的解是( )
A.x=8B.x=8或x=-8C.x=8D.x=-8
-
科目: 来源: 题型:
查看答案和解析>>【题目】用配方法解一元二次方程x2+2x-5=0,此方程可变形为( )
A.(x-1)2=6B.(x+1)2=6C.(x+1)2=4D.(x-1)2=1
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店需要购进甲、乙两种商品共180件,其进价和售价如表:(注:获利=售价﹣进价)
甲
乙
进价(元/件)
14
35
售价(元/件)
20
43
(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.
(1)求证:CP=AQ;
(2)若BP=1,PQ=
,∠AEF=45°,求矩形ABCD的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC.求证:∠BAC=∠BFC.

相关试题