【题目】一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是
.
(1)求袋中红球的个数;
(2)求从袋中任取一个球是黑球的概率.
参考答案:
【答案】
(1)解:290×
=10(个),
290﹣10=280(个),
(280﹣40)÷(2+1)=80(个),
280﹣80=200(个).
故袋中红球的个数是200个
(2)解:80÷290=
.
答:从袋中任取一个球是黑球的概率是 ![]()
【解析】(1)先根据概率公式求出白球的个数为10,进一步求得红、黑两种球的个数和为280,再根据红球个数是黑球个数的2倍多40个,可得黑球个数为(280﹣40)÷(2+1)=80个,进一步得到红球的个数;(2)根据概率公式可求从袋中任取一个球是黑球的概率.
【考点精析】认真审题,首先需要了解概率公式(一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,EF过ABCD对角线的交点O,交AD于E,交BC于F,若ABCD的周长为18,OE=1.5,则四边形EFCD的周长为( )

A.14
B.13
C.12
D.10 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M(1,﹣
)是抛物线上另一点.
(1)求a、b的值;
(2)连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标;
(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N作NH∥AC交抛物线的对称轴于H点.设ON=t,△ONH的面积为S,求S与t之间的函数关系式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.

(1)求证:BG=DE;
(2)若点G为CD的中点,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).

(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出△ABC关于x轴对称的△A1B1C1;
(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是( )

A.20cm
B.18cm
C.2
cm
D.3
cm
相关试题