【题目】如图,在△ABC中,点E是边AC上一点,线段BE垂直于∠BAC的平分线于点D,点M为边BC的中点,连接DM.
(1)求证: DM=
CE;
(2)若AD=6,BD=8,DM=2,求AC的长.
![]()
参考答案:
【答案】(1)见解析 (2)AC=14
【解析】
(1)证△BAD≌△EAD,推出AB=AE,BD=DE,根据三角形的中位线性质得出DM=
CE即可;
(2)根据勾股定理求出AB,求出AE,根据三角形的中位线求出CE,即可得出答案.
∵AD⊥BE,
∴∠ADB=∠ADE=90°,
∵AD为∠BAC的平分线,
∴∠BAD=∠EAD,
在△BAD和△EAD中,
,
∴△BAD≌△EAD(SAS),
∴AB=AE,BD=DE,
∵M为BC的中点,
∴DM=
CE
(2)∵在Rt△ADB中,∠ADB=90°,AD=6,BD=8,
∴由勾股定理得:AE=AB=
,
∵DM=2,DM=
CE,
∴CE=4,
∴AC=10+4=14.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AB=BC=CD=AD=4,∠DAB=∠B=∠C=∠D=90°,E,F分别是边BC,CD上的点,且CE=
BC,F为CD的中点,问△AEF是什么三角形?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在下面由火柴棒拼出的一系列的图形中,第n个图形由n个正方形组成.

(1)第2个图形中,火柴棒的根数是________;
(2)第3个图形中,火柴棒的根数是________;
(3)第4个图形中,火柴棒的根数是_______;
(4)第n个图形中,火柴棒的根数是_______ .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,点E是边CD的中点,连接BE并延长交AD的延长线于点F,连接CF.
(1)求证:四边形BDFC是平行四边形;
(2)若CB=CD,求四边形BDFC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:
①A,B两城相距300千米;
②乙车比甲车晚出发1小时,却早到1小时;
③乙车出发后2.5小时追上甲车;
④当甲、乙两车相距50千米时,t=
或
.其中正确的结论有( )

A.1个 B.2个 C.3个 D.4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在矩形
中,
,点
沿
边从点
开始向点
以
的速度移动,点
沿
边从点
开始向点
以
的速度移动,如果点
同时出发,用
表示移动的时间(
).(1)当
为何值时,
为等腰三角形?(2)求四边形
的面积,并探索一个与计算结果有关的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t天完成.
(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;
(2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?
【答案】(1)
;(2)
【解析】试题分析:(1)根据实际意义可列出夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;
(2)根据题意列出t﹣4对应的式子
,与(1)中的式子相减即可.试题解析:(1)由题意可得,函数关系式为:w=
(
);(2)
=
=
.(或
).答:每天多做
(或
)件夏凉小衫才能完成任务.考点:反比例函数的应用.
【题型】解答题
【结束】
13【题目】如图所示,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O左侧固定位置B处悬挂重物A,在中点O右侧用一个弹簧秤向下拉,改变弹簧秤与点O的距离x(cm),观察弹簧秤的示数y(N)的变化情况。实验数据记录如下:
x(cm)
…
10
15
20
25
30
…
y(N)
…
30
20
15
12
10
…
(1)把上表中x,y的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点并观察所得的图象,猜测y(N)与x(cm)之间的函数关系,并求出函数关系式;
(2)当弹簧秤的示数为24N时,弹簧秤与O点的距离是多少cm?
随着弹簧秤与O点的距离不断减小,弹簧秤上的示数将发生怎样的变化?


相关试题