【题目】为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;
(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
参考答案:
【答案】(1)
;(2)![]()
【解析】
(1)直接根据概率公式计算可得;
(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.
解:(1)因为有
,
,
种等可能结果,
所以八(1)班抽中歌曲《我和我的祖国》的概率是
;
故答案为
.
(2)树状图如图所示:
![]()
共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,E为CD上一点,若△ADE沿直线AE翻折,使点D落在BC边上点D′处.F为AD上一点,且DF=CD',EF与BD相交于点G,AD′与BD相交于点H.D′E∥BD,HG=4,则BD=__.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABC中,AB=BC,点D、E分别在边BC,AC上,连接DE,且DE=DC.

(1)问题发现:若∠ACB=∠ECD=45°,则
= .(2)拓展探究:若∠ACB=∠ECD=30°,将△EDC饶点C按逆时针旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中
的大小有无变化?如果不变,请求出
的值,如果变化,请说明理由;(3)问题解决:若∠ABC=∠EDC=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则
的值为 .(用含β的式子表示) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的直线交x轴于点C,且△ABC面积为10.
(1)求点C的坐标及直线BC的解析式;
(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作长形FGQP,且FG:GQ=1:2,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;
(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在平面直角坐标系内,
的三个顶点的分别为
,
,
(正方形网格中每个小正方形的边长是一个单位长度).
(1)在网格内画出
向下平移2个单位长度得到的
,点
的坐标是________;(2)以点
为位似中心,在网格内画出
,使
与
位似,且位似比为
,点
的坐标是________;(3)
的面积是________平方单位. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面内的两条直线l1、l2,点A、B在直线l2上,过点A、B两点分别作直线l1的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C,请依据上述定义解决如下问题.
(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= ;
(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;
(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),抛物线与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论

①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.
其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
相关试题