【题目】已知:如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,BE平分∠ABC交AD于点E, F是边AB上一点,以BF为直径的⊙O经过点E.
(1)求证:AD是⊙O的切线;
(2)若BC=4,cosC=
,求⊙O的半径.
![]()
参考答案:
【答案】(1)证明见解析;(2)![]()
【解析】试题分析:(1)连接OE;先证明OE∥BC,得出∠AEO=∠ADB,再证明AD⊥BC,得出∠AEO=90°,OE⊥AD,即可得出结论;
(2)先求出
,再证明
,得出对应边成比例,即可求出半径.
试题解析:(1)证明:连接OE,则OE=OB,
∴∠1=∠2,
∵BE平分∠ABC,∴∠1=∠3,
∴∠2=∠3,∴OE∥BC,
∴∠AEO=∠ADB,
在△ABC中,AB=AC,AD平分∠BAC,
∴AD⊥BC,∴∠ADB=90°,
∴∠AEO=90°,∴OE⊥AD,
∴AD是⊙O的切线.
(2)在△ABC中,AB=AC,AD平分∠BAC,
∴
∵
在△ABD中,∠ADB=90°,∴
设⊙O的半径为r,则AO=6-r.
∵OE∥BC,∴△AOE∽△ABD,
∴
即
解得
∴⊙O的半径为
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象(如图),图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.
(1)第24天的日销售量是 件,日销售利润是 元;
(2)求y与x之间的函数关系式,并写出x的取值范围;
(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,已知直线AB:y
x+4交x轴于点A,交y轴于点B.直线CD:y
x﹣1与直线AB相交于点M,交x轴于点C,交y轴于点D.(1)直接写出点B和点D的坐标;
(2)若点P是射线MD上的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系;
(3)当S=20时,平面直角坐标系内是否存在点E,使以点B、E、P、M为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点E的坐标;若不存在,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)数轴上点B表示的数是 ,点P表示的数是 (用含t的代数式表示);
(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:
①当点P运动多少秒时,点P与点Q相遇?
②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:

对于甲、乙两人的作法,可判断( )
A. 甲正确,乙错误 B. 甲错误,乙正确
C. 甲、乙均正确 D. 甲、乙均错误
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动;第1次点A向左移动3个单位长度至点
,第2次从点
向右移动6个单位长度至点
,第3次从点
向左移动9个单位长度至点
,…,按照这种移动方式进行下去,如果点
与原点的距离不小于20,那么n的最小值是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.
(1)当t= 时,△PQR的边QR经过点B;
(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;
(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.

相关试题