【题目】如图所示,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.
(1)求证:直线CD是⊙O的切线;
(2)若DE=2BC,求AD:OC的值.
![]()
参考答案:
【答案】(1)见解析;(2)2:3
【解析】试题分析:
(1)连接OD,由OD=OA可得∠ODA=∠OAD,由AD∥OC可得:∠OAD=∠COD,∠ODA=∠COD,从而可得∠COD=∠BOC,这样结合OD=OB,OC=OC即可证得△COD≌△COB,由此可得到∠ODC=∠OBC=90°,即可得到直线CD是⊙O的切线;
(2)由△COD≌△COB可得CD=BC结合DE=2BC可得DE=2CD,再证△EAD∽△EOC即可由相似三角形的性质求得AD:OC的比值了.
试题解析:
(1)证明:连接OD,
∵OA=OD,
∴∠ODA=∠OAD,
∵AD∥OC,
∴∠OAD=∠COD,∠ODA=∠COD,
∴∠COD=∠BOC,
在△COD和△BOC中:
,
∴△COD≌△BOC,
∴∠ODC=∠OBC=90°,
∴CD为圆O的切线;
(2)∵△COD≌△COB,
∴BC=CD,
∵DE=2BC,
∴DE=2CD,
∵AD∥OC,
∴△DAE∽△COE,
∴AD:OC=ED:AC=2:3.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的袋子中,装有2个红球和1个白球,这些球除了颜色外都相同.
(1)搅匀后从中随机摸出一球,请直接写出摸出红球的概率;
(2)如果第一次随机摸出一个球(不放回),充分搅匀后,第二次再从剩余的两球中随机摸出一个小球,求两次都摸到红球的概率.(用树状图或列表法求解)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.

(1)求n的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.
(1)当∠OCD=50°(图1),试求∠F.
(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)阅读下文,寻找规律:
已知 x≠1 时,(1-x)(1+x)=1-x
,(1-x)(1+x+x
)=1-x
,(1-x)(1+x+x
+x
)=1-x
.…观察上式,并猜想:
(1-x)(1+x+x
+ x
+x
)= ____________. (1-x)(1+x+x
+…+x
)= ____________.(2) 通过以上规律,请你进行下面的探素:
①(a-b)(a+b)= ____________.
②(a-b)(a
+ab+b
)= ____________.③(a-b)(a
+a
+ab
+b
)= ____________.(3) 根据你的猜想,计算:
1+2+2
+…+2
+2
+2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.
(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________
②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.
(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动。探究:当∠ACB多少度时,CE⊥BC?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,E为BC边上一点,且AB=AE.
(1)求证:△ABC≌△EAD;
(2)若∠B=65°,∠EAC=25°,求∠AED的度数.

相关试题