【题目】(1)先化简,再求值:(a+
)÷(
﹣a+2),请从﹣1,0,1中选取一个作为a的值代入求值.
(2)解方程:
﹣1=![]()
参考答案:
【答案】(1)取a=0,则原式=1;(2)原方程无解.
【解析】
(1)首先对括号内的分式通分相加,然后转化为乘法计算,即可化简,然后选取一个能使分式有意义的a的值代入求解.
(2)观察可得最简公分母是(x+2)(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,结果要检验.
解:(1)(a+
)÷(
﹣a+2)
=(
+
)÷(
﹣
)
=
÷![]()
=![]()
![]()
=
,
∵a=±1时,原式无意义,
∴取a=0,
则原式=1;
(2)方程两边都乘以(x+2)(x﹣2),得:x(x+2)﹣(x+2)(x﹣2)=8,
化简,得:2x+4=8 ,
解得:x=2,
检验,将x=2代入(x+2)(x﹣2)=0,
所以,x=2 是原方程的增根,
原方程无解.
故答案为:(1)取a=0,则原式=1;(2)原方程无解.
-
科目: 来源: 题型:
查看答案和解析>>【题目】A,B两市相距150千米,分别从A,B处测得国家级风景区中心C处的方向角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b的图象分别与反比例函数y=
的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=
的表达式;
(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】学校开展“书香校园,诵读经典”活动,随机抽查了部分学生,对他们每天的课外阅读时长进行统计,并将结果分为四类:设每天阅读时长为t分钟,当0<t≤20时记为A类,当20<t≤40时记为B类,当40<t≤60时记为C类,当t>60时记为D类,收集的数据绘制成如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:

(1)这次共抽取了 名学生进行调查统计,扇形统计图中的D类所对应的扇形圆心角为 °;
(2)将条形统计图补充完整;
(3)若该校共有2000名学生,请估计该校每天阅读时长超过40分钟的学生约有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
(1)求证:△ABC≌△ADE;
(2)求∠FAE的度数;
(3)求证:CD=2BF+DE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一个袋中有3张形状大小完全相同的卡片,编号为1,2,3,先任取一张,将其编号记为m,再从剩下的两张中任取一张,将其编号记为n.
(1)请用树状图或者列表法,表示事件发生的所有可能情况;
(2)求关于x的方程x2+mx+n=0有两个不相等实数根的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线经过点A(﹣1,0),B(3,0),C(0,3)三点.

(1)求此抛物线的解析式;
(2)若点M是线段BC上的点(不与B,C重合),过M作NM∥y轴交抛物线于N,设点M的横坐标为m,请用含m的代数式表示MN的长;
(3)在(2)的条件下,连接NB,NC,是否存在点M,使△BNC的面积最大?若存在,求m的值;若不存在,请说明理由.
相关试题