【题目】如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).此时EC有多长?
![]()
参考答案:
【答案】3
【解析】试题分析:根据题意,在Rt△FCE中,利用勾股定理求出EC长,设EC为x,因为△ADE与△AFE对折,所以 EF=DE=8-x, AF=AD=10, 在Rt△ABF中,利用勾股定理能求出BF=6,所以FC=4, 在Rt△FCE中, 利用勾股定理可求出EC.
试题解析:根据题意,设EC为x ,∵△ADE与△AFE对折,
∴EF=DE=8-x,Rt△ABF中,AF=AD=10,AB=8,BF2=AF2-AB2,
∴BF=6,∴FC=BC-BF=10-6=4,在Rt△FCE中,EC=x,EF=8-x,FC=4,
∴(8-x)2=x2+42,解得:x=3,即EC=3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
,BE平分
,
.
与BC平行吗?请说明理由;
与EF的位置关系如何?为什么?解:
理由如下:
平角的定义
已知
______
______
______
与EF的位置关系是______
平分
已知
角平分线的定义
又
,
已知
即
______
等量代换
______
______

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x1 , 0),C(x2 , 0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.

(1)求抛物线的解析式;
(2)当0<t≤8时,求△APC面积的最大值;
(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP于点D,交直线BC于点Q.

(1)如图1,当P在线段AC上时,求证:BP=AQ;
(2)如图2,当P在线段CA的延长线上时,(1)中的结论是否成立? (填“成立”或“不成立”)
(3)在(2)的条件下,当∠DBA= 度时,存在AQ=2BD,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.
求A、B两种品牌的化妆品每套进价分别为多少元?
若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD内接于⊙O,点E在劣弧AD上,则∠BEC等于( )

A.45°
B.60°
C.30°
D.55° -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:
,OE平分
,点A、B、C分别是射线OM、OE、ON上的动点
、B、C不与点O重合
,连接AC交射线OE于点
设
.
如图1,若
,则
的度数是______;
当
时,
______;当
时,
______.
如图2,若
,则是否存在这样的x的值,使得
中有两个相等的角?若存在,求出x的值;若不存在,说明理由.
相关试题