【题目】南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元.(销售利润
销售价
进货价)
(1) 求y与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;
(2) 假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;
(3) 当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?
参考答案:
【答案】(1) y=8x+8 (0≤x≤4)(2) z=-8x2+24x+32(3) 50
【解析】
(1)![]()
(2)
![]()
![]()
当
时,![]()
当定价为
万元时,有最大利润,最大利润为50万元.
或:当![]()
![]()
当定价为
万元时,有最大利润,最大利润为50万元
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们把形如x2=a(其中a是常数且a≥0)这样的方程叫做x的完全平方方程.
如x2=9,(3x﹣2)2=25,
…都是完全平方方程.那么如何求解完全平方方程呢?
探究思路:
我们可以利用“乘方运算”把二次方程转化为一次方程进行求解.
如:解完全平方方程x2=9的思路是:由(+3)2=9,(﹣3)2=9可得x1=3,x2=﹣3.
解决问题:
(1)解方程:(3x﹣2)2=25.
解题思路:我们只要把 3x﹣2 看成一个整体就可以利用乘方运算进一步求解方程了.
解:根据乘方运算,得3x﹣2=5 或 3x﹣2= .
分别解这两个一元一次方程,得x1=
,x2=﹣1.(2)解方程
. -
科目: 来源: 题型:
查看答案和解析>>【题目】在一次消防演习中,消防员架起一架25米长的云梯,如图斜靠在一面墙上,梯子底端离墙7米.

(1)求这个梯子的顶端距地面有多高?
(2)如果消防员接到命令,要求梯子的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的二次函数;
(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y关于x的解析式;
(2)求纯收益g关于x的解析式;
(3)问设施开放几个月后,游乐场的纯收益达到最大;几个月后,能收回投资?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂要把一批产品从A地运往B地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A地到B地的路程为x km,通过铁路运输和通过公路运输需交总运费y1元和y2元,
(1)求y1和y2关于x的表达式.
(2)若A地到B地的路程为120km,哪种运输可以节省总运费?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A,C分别在x轴、y轴的正半轴上,抛物线y=-
x2+bx+c经过点B,C两点,点D为抛物线的顶点,连接AC,BD,CD.(1)求此抛物线的解析式;
(2)求此抛物线顶点D的坐标和四边形ABDC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】我国从2008年6月起执行“限塑令”,“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的情况,随机调查了10名学生所在家庭月使用塑料袋的数量,结果如下(单位:只):
65,70,85,75,85,79,74,91,81,95
(1)计算这10名学生所在家庭平均月使用塑料袋多少只?
(2)“限塑令”执行后,家庭平均月使用塑料袋数量预计减少
,根据上面的计算后,你估计该校2000名学生所在的家庭平均月使用塑料袋一共可减少多少只?
相关试题