【题目】四边形ABCD中,∠A=100°,∠C=70°.点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN.若MF∥AD,FN∥DC,则∠D=_____°.
![]()
参考答案:
【答案】95
【解析】
首先利用平行线的性质得出∠BMF=80°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.
解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,
∴∠BMF=80°,∠FNB=70°,
∵将△BMN沿MN翻折,得△FMN,
∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,
∴∠F=∠B=180°﹣50°﹣35°=95°,
∴∠D=360°﹣100°﹣70°﹣95°=95°.
故答案为:95.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).

①以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1;
②将△ABC绕A点逆时针旋转90°得到△AB2C2 , 画出△AB2C2 , 并求出AC扫过的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.
(1)求证:△ABD≌△ACE;
(2)求证:四边形ABFE是菱形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把一副三角板如图甲放置,其中
,
,斜边AB=6cm,DC=7cm把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F . 
(1)求
的度数;
(2)求线段AD1的长;
(3)若把三角形D1CE1绕着点 C 顺时针再旋转30°得△D2CE2 , 这时点B在△D2CE2的内部、外部、还是边上?说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,点E是BC上的一点,BC=3BE,点D是AC的中点,若S△ADF﹣S△BEF=2.则S△ABC=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.

(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形
中,
,点
是
上的一点,
,
的垂直平分线交
的延长线于点
,连接
交
于点
.若
是
的中点,则
的长是________.
相关试题