【题目】A、B两地相距3000米,甲、乙两人沿同一条路从A地到B地,l1,l2分别表示甲乙两人离开A地的距离y(m)与时间x(min)之间的关系,根据图象填空:
(1)甲出发 min后,乙才出发;
(2) 先到达终点
(3)乙的速度是 m/min.
(4)乙出发后 min追上甲,这时他们距离B地 m
![]()
参考答案:
【答案】(1)5;(2)乙;(3)200;(4)7.5;1500.
【解析】
(1)(2)根据点的横坐标即可得出甲先出发5min后,乙才出发,乙先到达终点;
(3)根据速度=路程÷时间,即可分别求出乙的速度.
(4)观察图形即可解决问题;
(1)甲出发5min后,乙才出发;
(2)乙先到达终点
(3)乙的速度是
=200m/min.
(4)设y乙=200x+b;
把(20,3000)代入,可得:3000=200×20+b,
解得:b=﹣1000,
所以y乙=200x﹣1000,
设y甲=kx(k≠0),
把点(25,3000)代入,可得:3000=25k,
解得:k=120,
∴y甲=120x.
令y甲=y乙,则120x=200x﹣1000,
解得:x=12.5,
12.5﹣5=7.5
此时s甲=120x=1500.
乙出发后 7.5min追上甲,这时他们距离B地1500m.
故答案为:5;乙;200;7.5;1500.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,教学楼走廊左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜在右墙时,顶端距离地面2米,求教学楼走廊的宽度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】环保健康的“共享单车”已成为人们短途出行的一种新方式,一辆新投放市场的单车其先期成本为1050元.如图是一辆新投放的共享单车其运营收入w1和运营支出w2关于时间m的函数图象.

注:一辆单车的盈利=运营收入﹣运营支出﹣先期成本
(1)分别求w1及运营60天后w2关于时间m的函数关系式.
(2)求一辆新投放市场的单车恰好收回先期成本需要运营多少天?
(3)某公司投放市场一批单车,其先期成本不少于2.1万元但不超过10.5万元,经过一段时间的市场试运营共盈利3550元,则该公司试运营的天数为天(直接写出答案). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D、点B与点E、点C与点F分别是对应点.观察点与点的坐标之间的关系,解答下列问题:
(1)分别写出点A与点D、点B与点E、点C与点F的坐标,并说出三角形DEF是由三角形ABC经过怎样的变换得到的;
(2)若点Q(a+3,4-b)是点P(2a,2b-3)通过上述变换得到的,求a-b的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)材料1:一般地,n个相同因数a相乘:
记为
如
,此时,3叫做以2为底的8的对数,记为log28(即log28=3).那么,log39=________,
=________; (2)材料2:新规定一种运算法则:自然数1到n的连乘积用n!表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在这种规定下,请你解决下列问题:
①算5!=________;
②已知x为整数,求出满足该等式的
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线y=﹣
x+8,与x轴、y轴分别交于点A、C,以AC为对角线作矩形OABC,点P、Q分别为射线OC、射线AC上的动点,且有AQ=2CP,连结PQ,设点P的坐标为P(0,t).
(1)求点B的坐标.
(2)若t=1时,连接BQ,求△ABQ的面积.
(3)如图2,以PQ为直径作⊙I,记⊙I与射线AC的另一个交点为E.
①若
=
,求此时t的值.
②若圆心I在△ABC内部(不包含边上),则此时t的取值范围为是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】方法回顾:在进行数值估算时,我们常根据所求数值的条件确定它的大致范围,然后通过逐步缩小数值存在范围的方法,最终求得较为准确的数值.
如我们在探究面积为2的正方形的边长a的值时,有如下探究过程:
1<a<2
1<s<4
1.4<a<1.5
1.96<s<2.25
1.41<a<1.42
1.9881<s<2.0164
1.414<a<1.415
1.999396<s<2.002225
我们也可以借助数轴直观地看出“逐步缩小数值的存在范图”的过程,

这种方法在我们的解决向题的过程中经常会用到
问题提出:a是小于100的正整数,已知它的立方,不借助计算器,如何确定a呢?
问题探究:我们不妨由简单到复杂,从一位整数的立方开始硏究
步骤一、若13<a3<103,则1<a<10.即已知一个一位整数的立方为a3,怎样确定a?
易得:13=1,23=8,33=27,43=64,53=125,63=216,73=343:83=512,93=729,可以通过从1到9的九个整数的立方值确定这个数.观察这九个立方值我们还能发现,他们的个位数字各不相同.
步骤二、若103<a3<1003.则10<a<100,即已知一个两位数的立方为a3,怎样确定a?我们不妨举几个特例,以便寻找解决问题的方法.
特例1.如果一个两位整数a的立方是5832,怎样确定a?
因为103<5832<1003,所以10<a<100,a是一个两位数.
又因为103<5832<203,所以我们可以确定5832的十位数字是 ;再根据步骤一我们就能得出它的个位数是 ;从而确定这个两位数是 .
特例2.如果x是一个两位整数,且x3=614125,请你仿照上面的过程说明你确定这个两位整数的方法.
拓展应用:一颗近似球形的小行星的体积的为2624000πm3,请你根据以上方法求出这个小行星的半径.(球的体积公式v=
πR3)
相关试题