【题目】如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:
①AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④点N为△ABM的外心.其中正确的个数为( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
参考答案:
【答案】B
【解析】解:∵E为CD边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;
当AB=BC时,即四边形ABCD为正方形时,设DE=EC=1,BM=a,则AB=2,BF=4,AM=FM=4﹣a,在Rt△ABM中,22+a2=(4﹣a)2,解得a=1.5,即BM=1.5,∴由勾股定理可得AM=2.5,∴DE+BM=2.5=AM,又∵AB<BC,∴AM=DE+BM不成立,故②错误;
∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=ADCM,故③正确;
∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,∴当BM∥AD时,
<1,∴N不是AM的中点,∴点N不是△ABM的外心,故④错误.
综上所述,正确的结论有2个,故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,点
在
上,以
为半径的
交
于点
,
的垂直平分线交
于点
,交
于点
,连接
.(1)判断直线
与
的位置关系,并说明理由;(2)若
,
,
,求线段
的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+3分别与x,y轴交于点N,M,与反比例函数y=
(x>0)的图象交于点A,若AM:MN=2:3,则k= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.

(1)求证:CD=CB;
(2)若∠ACN= a,求∠BDC的大小(用含a的式子表示);
(3)请判断线段PB,PC与PE三者之间的数量关系,并证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.

(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;
(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2 , 并指出她与嘉嘉抽到勾股数的可能性一样吗? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG.下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=
AD.其中正确的有( )
A. ① ② B. ① ② ④ C. ① ③ ④ D. ① ② ③ ④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线
与
轴交于
和
两点,与
轴交于
点.(1)求此抛物线的解析式;
(2)设
是线段
上的动点,作
交
于
,连接
,当
的面积是
面积的2倍时,求
点的坐标;(3)若
为抛物线上
、
两点间的一个动点,过
作
轴的平行线,交
于
,当
点运动到什么位置时,线段
的值最大,并求此时
点的坐标.
相关试题