【题目】如图,一条光纤线路从A地到B地需要经过C地,图中AC=40千米,∠CAB=30°,∠CBA=45°,求AB的距离.(
≈1.41,
≈1.73,结果取整数)
![]()
参考答案:
【答案】55千米
【解析】试题分析:过C作CD⊥AB,交AB于点D,利用∠CAD的正弦和余弦分别求出CD、AD,再利用∠CBA的正切求出BD,然后根据AB=AD+BD计算即可得解;
解:如图,过C作CD⊥AB,交AB于点D,
![]()
在Rt△ACD中,CD=ACsin∠CAD=ACsin30°=40×
=20(千米),
AD=ACcos∠CAD=ACcos30°=40×
=20
(千米),
在Rt△BCD中,BD=
=
=
=20(千米),
∴AB=AD+DB=20
+20=20(
+1)≈55(千米),
答:AB的距离约为55千米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D,连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与B,C两点重合),过点P作x轴的垂线交抛物线于点F,设点P的横坐标为m(0<m<3)
(1)当m为何值时,四边形PEDF为平行四边形;
(2)设△BCF的面积为S,求S的最大值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(阅读材料)观察下列图形与等式的关系,并填空:

+(
)2=1﹣(
)2;
+(
)2+(
)3= 
+(
)2+(
)3+(
)4= (规律探究)观察下图:

根据以上发现,用含n的代数式填空:
+(
)2+(
)3+(
)4+(
)5+…+(
)n= .(解决问题)根据以上发现,计算:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】小明和同桌小聪在课后复习时,对练习册“目标与评定”中的一道思考题,进行了认真地探索.
(思考题)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?

(1)请你将小明对“思考题”的解答补充完整:
解:设点B将向外移动x米,即BB1=x,
则A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12,
得方程___________________,解方程,得x1=____,x2=______________,∴点B将向外移动____米.
(2)解完“思考题”后,小聪提出了如下两个问题:
(问题一)在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
(问题二)在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?
请你解答小聪提出的这两个问题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1为某月的月历表,图2是
型的框图,且框图中五个小正方形与月历表中每个小正方形大小相同.观察并思考下列问题:
(1)用图2框图在月历表中任意圈出5个数(日期),这5个数的和的最小值是 ,最大值是 .
(2)在该月历表中可以得到 个这样的框图;
(3)如果型框图中5个数的和为80,则图二中字母a代表的数字是多少?并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】王晓同学要证明命题“对角线相等的平行四边形是矩形”是正确的,她先作出了如图所示的平行四边形ABCD,并写出了如下不完整的已知和求证.

已知:如图,在平行四边形ABCD中, .
求证:平行四边形ABCD是 .
(1)在方框中填空,以补全已知和求证;
(2)按王晓的想法写出证明过程.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,左边是小颗的圆柱形笔筒,右边是小彬的六棱柱形笔筒,仔细观察两个笔简,并回答下面问题.

(1)圆柱、六棱柱各有几个面?
(2)圆柱的侧面与底面相交的线是直的还是曲的?
(3)六棱柱有几个顶点?经过每个顶点有几条棱?
(4)试写出圆柱与棱柱的相同点与不同点(各写出一个)
相关试题