【题目】综合与实践
问题情境
在
中,
,
,
于点
,点
是射线
上一点,连接
,过点
作
于点
,且交直线
于点
.
![]()
(1)如图1,当点
在线段
上时,求证:
.
自主探究
(2)如图2,当点
在线段
上时,其它条件不变,请猜想
与
之间的数量关系,并说明理由.
拓展延伸
(3)如图3,当点
在线段
的延长线上时,其它条件不变,请直接写出
与
之间的数量关系.
参考答案:
【答案】(1)证明见解析;(2)
;证明见解析;(3)
.
【解析】
(1)根据等腰直角三角形的性质得到∠A=∠ABC,根据同角的余角相等得到∠CBG=∠ACE,根据ASA公理证明△ACE≌△CBG;
(2)同理即可证明△ACE≌△CBG;
(3)CG=AE.
解:(1)在Rt△ABC中,
∵AC=BC,
∴∠A=∠ABC=45°.
∵点D是AB的中点,
∴∠BCG=
∠ACB=45°,
∴∠A=∠BCG.
∵BF⊥CE,
∴∠CBG+∠BCF=90°.
∵∠ACE+∠BCF=90°,
∴∠CBG=∠ACE,
在△ACE和△CBG中,
,
∴△ACE≌△CBG;
(2)结论仍然成立,即△ACE≌△CBG.
理由如下:在Rt△ABC中,
∵AC=BC,
∴∠A=∠ABC=45°.
∵点D是AB的中点,
∴∠BCG=
∠ACB=45°,
∴∠A=∠BCG.
∵BF⊥CE,
∴∠CBG+∠BCF=90°.
∵∠ACE+∠BCF=90°,
∴∠CBG=∠ACE,
∴△ACE≌△CBG;
(3)CG=AE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法:①三点确定一个圆;②平分弦的直径必垂直于这条弦;③圆周角等于圆心角的一半;④等弧所对的圆心角相等;⑤各角相等的圆内接多边形是正多边形.其中正确的有( )
A.
个 B.
个 C.
个 D.
个 -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料,完成相应任务:


(1)小明在研究命题①时,在图1的正方形网格中画出两个符合条件的四边形.由此判断命题①是 命题(填“真”或“假”).
(2)小彬经过探究发现命题②是真命题.请你结合图2证明这一命题.
(3)小颖经过探究又提出了一个新的命题:“若
,
,
, , ,则四边形
≌四边形
”请在横线上填写两个关于“角”的条件,使该命题为真命题. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示是某公园为迎接“中国–南亚博览会”设置的一休闲区.
,弧
的半径
长是
米,
是
的中点,点
在弧
上,
,则图中休闲区(阴影部分)的面积是( )
A.
米
B.
米
C.
米
D.
米
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
的半径是
,直线
与
相交于
、
两点.
是
上的一个动点,若
,则
面积的最大值是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
是
的直径,
是
的弦,弦
于点
,交
于点
,过点
的直线与
的延长线交于点
,
.
求证:
是
的切线;
当点
在劣弧
上运动时,其他条件不变,若
.求证:点
是
的中点;
在满足
的条件下,
,
,求
的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】定义:几个全等的正多边形依次有一边重合,排成一圈,中间可以围成一个正多边形,我们称作正多边形的环状连接。如图,我们可以看作正六边形的环状连接,中间围成一个边长相等的正六边形;若正八边形作环状连接,中间可以围的正多边形的边数为;

若正八边形作环状连接,中间可以围的正多边形的边数为________,若边长为1的正n边形作环状连接,中间围成的是等边三角形,则这个环状连接的外轮廓长为_________.
相关试题