【题目】如图,在△ABC 中,∠C=90°,∠A=34°,D,E 分别为 AB,AC 上一点,将△BCD,△ADE 沿 CD,DE 翻折,点 A,B 恰好重合于点 P 处,则∠ACP=_______________.
![]()
参考答案:
【答案】22°
【解析】
根据折叠的性质即可得到 AD=PD=BD,根据 D 是 AB 的中点,可得CD=
AB=AD=BD,根据∠ACD=∠A=34°,∠BCD=∠B=56°,即可得出∠BCP=2∠BCD= 112°,即可得出∠ACP=112°﹣90°=22°.
由折叠可得,AD=PD=BD,
∴D 是 AB 的中点,
∴CD=
AB=AD=BD,
∴∠ACD=∠A=34°,∠BCD=∠B=56°,
∴∠BCP=2∠BCD=112°,
∴∠ACP=112°﹣90°=22°.
故答案为:22°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),
其中结论正确的个数是

A.1 B.2 C.3 D.4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线l:y=
x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=
x2+bx+c经过点B,与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别27和54,则正方形③的边长为______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AC=DC=3,BD垂直∠BAC的角平分线于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,花果山上有两只猴子在一棵树CD上的点B处,且BC=5m,它们都要到A处吃东西,其中一只猴子甲沿树爬下走到离树10m处的池塘A处,另一只猴子乙先爬到树顶D处后再沿缆绳DA线段滑到A处.已知两只猴子所经过的路程相等,设BD为xm.
(1)请用含有x的整式表示线段AD的长为______m;
(2)求这棵树高有多少米?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.

相关试题