【题目】已知等腰三角形三条边的长分别为
、
、
,若
,
、
是关于
的方程
的两个根,则
的值为______.
参考答案:
【答案】12或16
【解析】
根据根与系数的关系可得出b+c=8、bc=m,分a=6为腰长或a=6为底长两种情况考虑:当a=6为腰长时,可得出b、c的长度,进而可得出m的值,利用三角形的三边关系验证后可得出m=12符合题意;当a=6为底长时,根据等腰三角形的性质可得出b、c的长度,进而可得出m的值,利用三角形的三边关系验证后可得出m=16符合题意.此题得解.
解:∵b、c是关于x的方程x2-8x+m=0两个根,
∴b+c=8,bc=m.
当a=6为腰长时,b=6,c=2,此时m=12(或c=6,b=2,m=12),
∵6,6,2可组成等腰三角形,
∴m=12符合题意;
当a=6为底长时,∵b+c=8,b=c,
∴b=c=4,
∴m=16,
∵6,4,4可组成等腰三角形,
∴m=16符合题意.
故答案为:12或16.
-
科目: 来源: 题型:
查看答案和解析>>【题目】张师傅开车到某地送货,汽车出发前油箱中有油50升,行驶一段时间,张师傅在加油站加油,然后继续向目的地行驶.已知加油前、后汽车都匀速行驶,汽车行驶时每小时的耗油量一定.油箱中剩余油量Q(升)与汽车行驶时间t(时)之间的函数图象如图所示.

(1)张师傅开车行驶________小时后开始加油,本次加油________升.
(2)求加油前Q与t之间的函数关系式.
(3)如果加油站距目的地210千米,汽车行驶速度为70千米/时,张师傅要想到达目的地,油箱中的油是否够用?请通过计算说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.
例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.

(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是________,推断的数学依据是________.
(2)如图②,在△ABC中,∠B=45°,AB=
,BC=8,AD为边BC的中线,求边BC的中垂距.
(3)如图③,在矩形ABCD中,AB=6,AD=4.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,AB=BC=6,∠B=60°,∠D=90°,连结AC.动点P从点B出发,沿BC以每秒1个单位的速度向终点C运动(点P不与点B、C重合).过点P作PQ⊥BC交AB或AC于点Q,以PQ为斜边作Rt△PQR,使PR∥AB.设点P的运动时间为t秒.

(1)当点Q在线段AB上时,求线段PQ的长.(用含t的代数式表示)
(2)当点R落在线段AC上时,求t的值.
(3)设△PQR与△ABC重叠部分图形的面积为S平方单位,求S与t之间的函数关系式.
(4)当点R到C、D两点的距离相等时,直接写出t的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们约定:体重在选定标准的
%(包含)范围之内时都称为“一般体重”.为了解某校七年级男生中具有“一般体重”的人数,我们从该校七年级男生中随机选出10名男生,测量出他们的体重(单位:kg),收集并整理得到如下统计表:男生序号
①
②
③
④
⑤
⑥
⑦
⑧
⑨
⑩
体重
(kg)45
62
55
58
67
80
53
65
60
55
根据以上表格信息解决如下问题:
(1)将这组数据的三个统计量:平均数、中位数和众数填入下表:
平均数
中位数
众数
(2)请你选择其中一个统计量作为选定标准,说明选择的理由.并按此选定标准找出这10名男生中具有“一般体重”的男生.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于
的一元二次方程
有两个实数根
,
.(1)分别用含
的代数式表示
,
的值.(2)若
,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线y=﹣x+3与抛物线
交于A、B两点,点A在x轴上,点B的横坐标为
.动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.
(1)求b、c的值.
(2)当点N落在直线AB上时,直接写出m的取值范围.
(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN的周长为C,求C与m之间的函数关系式,并写出C随m增大而增大时m的取值范围.
(4)当△PQM与坐标轴有2个公共点时,直接写出m的取值范围.
相关试题