【题目】解决问题时需要思考:是否解决过与其类似的问题.小明从问题1解题思路中获得启发从而解决了问题2.
(1)问题1:如图①,在正方形ABCD中,E、F是BC、CD上两点,∠EAF=45°. ![]()
求证:∠AEF=∠AEB.
小明给出的思路为:延长EB到H,满足BH=DF,连接AH.请完善小明的证明过程.
(2)问题2:如图②,在等腰直角△ABC中,∠ACB=90°,AC=BC=4,D为AB中点,E、F是AC、BC边上两点,∠EDF=45°. ![]()
①求点D到EF的距离.
②若AE=a,则S△DEF=(用含字母a的代数式表示).
参考答案:
【答案】
(1)证明:如图①中,延长EB到H,满足BH=DF,连接AH
![]()
∵AB=AD,∠ABH=∠D=90°,BH=DF,
∴△ADF≌ABH,
∴∠DAF=∠BAH,AF=AH,
∵∠DAF+∠BAE=∠BAD﹣∠EAF=90°﹣45°=45°,
即∠EAH=∠BAH+∠BAE=45°,
∴∠EAH=∠EAF,
又∵AF=AH,AE=AE,
∴△AHE≌△AFE,
∴∠AEF=∠AEB.
(2)①解:过点D分别向AC、BC、EF作垂线,垂足分别为G、H、M, ![]()
∵∠ACB=90°,∴CGDH为矩形,∵AC=BC=4,D为AB中点,
∴DG=DH=
BC=2,
∴四边形CGDH为正方形,
由问题1知∠DEG=∠DEM,
∴DM=DG=2.
② ![]()
【解析】(2)②解:在Rt△DEG中,DE=
=
=
, ∵S△AED=
AEDG=a,
∵△DEF∽△AED,
∴
=(
)2=
,
∴S△DEF=
.
故答案为
.
问题1:如图①中,延长EB到H,满足BH=DF,连接AH,只要证明△AHE≌△AFE,即可推出∠AEF=∠AEB;问题2:(1)如图②中,过点D分别向AC、BC、EF作垂线,垂足分别为G、H、M,利用(1)中即可,根据角平分线的性质定理即可解决问题,(2)在Rt△DEG中,DE=
=
=
,由S△AED=
AEDG=a,△DEF∽△AED,推出
=(
)2=
,由此即可解决问题;
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠A=∠B=50°,P 为 AB 中点,点 M 为射线 AC 上(不与点 A 重合)的任意点,连接 MP,并使 MP 的延长线交射线 BD 于点 N,设∠ BPN=α.
(1)求证:△APM≌△BPN;
(2)当 MN=2BN 时,求α的度数;

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人周末从同一地点出发去某景点,因乙临时有事,甲坐地铁先出发,甲出发0.2小时后乙开汽车前往.设甲行驶的时间为x(h),甲、乙两人行驶的路程分别为y1(km)与y2(km).如图①是y1与y2关于x的函数图象.

(1)分别求线段OA与线段BC所表示的y1与y2关于x的函数表达式;
(2)当x为多少时,两人相距6km?
(3)设两人相距S千米,在图②所给的直角坐标系中画出S关于x的函数图象.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点E,F分别是AB,CD上的点,点G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列判断中,错误的是( )

A. ∠AEF=∠EFC B. ∠A=∠BCF C. ∠AEF=∠EBC D. ∠BEF+∠EFC=180°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,∠B=60°,内切圆O与边AB、BC、CA分别相切于点D、E、F,则∠DEF的度数为°.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.

相关试题