【题目】有一个附有进水管、出水管的水池,每单位时间内进出水管的进、出水量都是一定的,设从某时刻开始,4h内只进水不出水,在随后的时间内不进水只出水,得到的时间x(h)与水量y(m3)之间的关系图(如图).回答下列问题:
![]()
(1)进水管4h共进水多少?每小时进水多少?
(2)当0≤x≤4时,y与x有何关系?
(3)当x=9时,水池中的水量是多少?
(4)若4h后,只放水不进水,那么多少小时可将水池中的水放完?
参考答案:
【答案】(1)进水20m3,所以每小时进水量为5m3.(2)y=5x(0≤x≤4).(3)10m3.(4)10h.
【解析】
试题分析:在本题中横坐标的意义是进出水的时间,纵坐标表示水池中的水量,从图象看0≤x≤4时,y是x的正比例函数;x>4时,y是x的一次函数,根据函数关系解决问题即可.
试题解析:(1)由图象知,4h共进水20m3,所以每小时进水量为5m3.
(2)y是x的正比例函数,设y=kx,由于其图象过点(4,20),所以20=4k,k=5,即y=5x(0≤x≤4).
(3)由图象可知:当x=9时y=10,即水池中的水量为10m3.
(4)由于x≥4时,图象是一条直线,所以y是x的一次函数,
设y=kx+b,由图象可知,该直线过点(4,20),(9,10).
∴![]()
∴![]()
∴y=-2x+28
令y=0,则-2x+28=0,∴x=14.
14-4=10,所以4h后,只放水不进水,10h就可以把水池里的水放完.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示,请根据图象所提供的信息解答下列问题:

(1)甲、乙两根蜡烛燃烧前的高度分别是 ,从点燃到燃尽甲所用的时间为 .
(2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;
(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡低?
-
科目: 来源: 题型:
查看答案和解析>>【题目】 “十
一”黄金周期间,西安大唐芙蓉园在7天假期中每天接待游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)。日期
10月1日
10月2日
10月3日
10月4日
10月5日
10月6日
10月7日
人数变化
(万人)
+1.6
+0.8
+0.4
-0.4
-0.8
+0.2
-1.4
(1)若9月30日的游客人数为
万人,则10月2日的游客人数为_______万人;(2)七天内游客人数最大的是10月_______日;
(3)若9月30日游客人数为3万人,门票每人120元。请求出黄金周期间西安大唐芙蓉园门票总收入是多少万元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)画出△ABC关于y轴的对称图形
,并写出
的顶点坐标;(2)在x轴上求作点P,使PA+PC的值最小.

-
科目: 来源: 题型:
查看答案和解析>>【题目】李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.
(1)李明步行的速度(单位:米/分)是多少?
(2)李明能否在联欢会开始前赶到学校?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校一间阶梯教室中,第1排的座位数为a,从第2排开始,每一排都比前一排增加两个座位.
(1)请你在下表的空格里填写一个适当的式子:
第1排的
座位数
第2排的
座位数
第3排的
座位数
第4排的
座位数
…
a
a+2
a+4
…
(2)写出第n排座位数的表达式;
(3)求当a=20时,第10排的座位数是多少?若这间阶梯教室共有15排,那么最多可容纳多少学员?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边三角形ABC中,BD是AC边上的中线,延长BC到E,使CE=CD.

问:
(1)DB与DE相等吗?
(2)把BD是AC边上的中线改成什么条件,还能得到同样的结论?
相关试题