【题目】(1)①如图1,已知
,
,可得
__________.
![]()
②如图2,在①的条件下,如果
平分
,则
__________.
![]()
③如图3,在①、②的条件下,如果
,则
__________.
![]()
(2)尝试解决下面问题:已知如图4,
,
,
是
的平分线,
,求
的度数.
![]()
参考答案:
【答案】(1)①
,②
,③
;(2)
.
【解析】
(1) ①根据两直线平行,内错角相等即可求解;
②根据角平分线的定义求解即可;
③根据互余的两个角的和等于90°,计算即可;
(2)先根据两直线平行,同旁内角互补和角平分线的定义求出∠BCN的度数,再利用互余的两个角的和等于90°即可求出.
解:(1)①由两直线平行,内错角相等得到∠BCD=60°;
②如果
平分
,则![]()
=30°;
③如果
,则
90°-
60°.
(2)、∵
,
∴
,
∵
,
∴
.
∵
是
的平分线,
∴![]()
∵
,
∴
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】雷达二维平面定位的主要原理是:测量目标的两个信息―距离和角度,目标的表示方法为
,其中,m表示目标与探测器的距离;
表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为
,目标C的位置表示为
.用这种方法表示目标B的位置,正确的是( )
A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)
-
科目: 来源: 题型:
查看答案和解析>>【题目】合肥市某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.
(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;
(2)若建成后的寝室可供600人住宿,求单人间的数量;
(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一动点从原点O出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2016的坐标为________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:
①若a+b+c=0,则b2﹣4ac>0;
②若方程两根为﹣1和2,则2a+c=0;
③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;
④若b=2a+c,则方程有两个不相等的实根.其中正确的有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.
(1)若∠B=35°,∠ACB=85°,求∠E得度数.
(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】在□ABCD中,E为BC的中点,过点E作EF⊥AB于点F,延长DC,交FE的延长线于点G,连结DF,已知∠FDG=45°

(1)求证:GD=GF.
(2)已知BC=10,
.求 CD的长.
相关试题