【题目】小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下:
![]()
(1)计算“3点朝上”的频率和“5点朝上”的频率.
(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?
参考答案:
【答案】(1)“3点朝上”的频率是
;“5点朝上”的频率是
.(2)小颖的说法是错误的. 小红的说法也是错误的.
【解析】试题分析:根据表格中的数字概率
试题解析:(1)、“3点朝上”的频率是
;“5点朝上”的频率是
.
(2)、小颖的说法是错误的.因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,
只有当试验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.
小红的说法也是错误的.因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某手机销售商分别以每部进价分别为800元、670元的A、B两种型号的手机,下表是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
6台
7650元
第二周
4台
10台
11800元
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的手机的销售单价;
(2)若手机销售商准备再采购这两种型号的手机共30台,且利润不低于4000元,求A种型号的手机至少要采购多少台?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,反比例函数y=
(k<0)与一次函数y=kx+b相交于A、B两点,若点A的坐标为(-1,7).(1)求反比例函数和一次函数的解析式;
(2)求△ABO的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,记录球的颜色,放回盒中,然后重复上述过程。
活动结果:摸球实验活动一共做了50次,统计结果如下表:

推测计算:由上述的摸球实验可推算:
(1)盒中红球、黄球各占总球数的百分比分别是多少?
(2)盒中有红球多少个?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )

A. ∠BAC=70° B. ∠DOC=90° C. ∠BDC=35° D. ∠DAC=55°
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:

(1)请估计:当n很大时,摸到白球的概率约为______;(精确到0.1)
(2)估算盒子里有白球________个;
(3)若向盒子里再放入x个除颜色以外其他完全相同的球,这x个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,请推测x的值最有可能是多少.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是( )

A. ∠1=∠2+∠A B. ∠1=2∠A+∠2
C. ∠1=2∠2+2∠A D. 2∠1=∠2+∠A
相关试题