【题目】某学校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.
求A种,B种树木每棵各多少元?
因布局需要,购买A种树木的数量不少于B种树木数量的3倍
学校与中标公司签订的合同中规定:在市场价格不变的情况下
不考虑其他因素
,实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,
参考答案:
【答案】(1)A种树每棵100元,B种树每棵80元;(2)当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.
【解析】
(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;
(2)设购买A种树木为a棵,则购买B种树木为(100-a)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得a的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.
设A种树每棵x元,B种树每棵y元,依题意得:
,
解得
.
答:A种树每棵100元,B种树每棵80元;
设购买A种树木为a棵,则购买B种树木为
棵,依题意得:
,
解得
.
设实际付款总金额是y元,则
,
即
.
,y随a的增大而增大,
当
时,y最小.
即当
时,
元
.
答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.

(1)分别求直线l1与x轴,直线l2与AB的交点坐标;
(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;
(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由). -
科目: 来源: 题型:
查看答案和解析>>【题目】某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:

(1)这次活动一共调查了名学生;
(2)补全条形统计图;
(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;
(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是人. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=x+m的图象与反比例函数y=
的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;
(2)求点C的坐标,并结合图象写出不等式组0<x+m≤
的解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知一次函数
的图象与过
、
的直线交于点P,与x轴、y轴分别相交于点C和点D.
求直线AB的解析式及点P的坐标;
连接AC,求
的面积;
设点E在x轴上,且与C、D构成等腰三角形,请直接写出点E的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD是平行四边形,则下列结论中不正确的是( )

A. 当AB=BC时,四边形ABCD是菱形
B. 当AC⊥BD时,四边形ABCD是菱形
C. 当∠ABC=90°时,四边形ABCD是矩形
D. 当AC=BD时,四边形ABCD是正方形
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们可以将任意三位数表示为
(其中a、b、c 分别表示百位上的数字,十位上的数字和个位上的数字,且a
0)显然,
= 100a+10b+c;我们把形如
和
的两个三位数称为一对“姊妹数”(其中x、y、z是三个连续的自然数)如:123和321是一对“姊妹数”,789和987是一对“姊妹数”.(1)一对“姊妹数”的和为1110,求这对“姊妹数”.
(2)如果用x表示百位数字,试说明:任意一对“姊妹数”的和能被37整除.
相关试题