【题目】本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图. ![]()
根据统计图解答下列问题:
(1)本次测试的学生中,得4分的学生有多少人?
(2)本次测试的平均分是多少分?
(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?
参考答案:
【答案】
(1)解:根据题意得:
得4分的学生有50×50%=25(人),
答:得4分的学生有25人
(2)解:根据题意得:
平均分=
=3.7(分)
(3)解:设第二次测试中得4分的学生有x人,得5分的学生有y人,根据题意得:
,
解得:
,
答:第二次测试中得4分的学生有15人,得5分的学生有30人
【解析】(1)用总人数乘以得4分的学生所占的百分百即可得出答案;(2)根据平均数的计算公式把所有人的得分加起来,再除以总人数即可;(3)先设第二次测试中得4分的学生有x人,得5分的学生有y人,再根据成绩的最低分为3分,得4分和5分的人数共有45人,平均分比第一次提高了0.8分,列出方程组,求出x,y的值即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,□ABCD中,AC与BD相交于点O,AB=AC,延长BC到点E,使CE=BC,连接AE,分别交BD、CD于点F、G.
(1) 求证:△ADB≌△CEA;
(2) 若BD=6,求AF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10 ℃,待加热到100 ℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20 ℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:
(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;
(2)求出图中a的值;
(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40 ℃的开水,则他需要在什么时间段内接水?

-
科目: 来源: 题型:
查看答案和解析>>【题目】若二次函数yx22xa有最小值为6,则a的值为____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若x1、x2、x3的方差为4,则2 x1+3、2 x2+3、2 x2+3的方差为______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:数学活动课上,陈老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.
(1)理解:
如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;
(2)应用:
如图2,在Rt△PBC中,∠PCB=90°,BC=9,点A在BP边上,且AB=13.AD⊥PC,CD=12,若PC上存在符合条件的点M,使四边形ABCM为对等四边形,求出CM的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,对于P(m,n),若点Q的坐标为(m,|m-n|),则称点Q为点P的关联点.
(1)请直接写出点(2,2)的关联点;
(2)如果点P在一次函数y=x-1的图像上,其“关联点”Q与点P重合,求点P的坐标;
(3)已知点P在一次函数y=x(x>0)和一次函数y=
x(x>0)所围成的区域内,且点P的“关联点”Q在二次函数
的图像上,求线段PQ的最大值及此时点P的坐标.
相关试题