【题目】如图,在中,
,
,
,点
是
的中点,点
在边
上,将
沿
翻折,使点
落在点
处,当
时,
________.
【答案】或
【解析】
分两种情况进行讨论:①当A'在AC上方时,由折叠可得∠AED=∠A'ED,当A'E⊥AC时,∠AED=∠A'ED=45°,再过D作DF⊥AC于F,过B作BG⊥A'E于G,则△DEF是等腰直角三角形,再根据DF∥BC,D是AB的中点,BC=6,求得,最后根据等腰Rt△A'BG可得
;②当A'在AC下方时,也是作辅助线构造等腰直角三角形和矩形,利用勾股定理进行计算求解.
解:①如图所示,A'在AC上方,
∵在△ABC中,∠C=90°,AC=8,BC=6,
∴AB=10, 由折叠可得∠AED=∠A'ED,
当A'E⊥AC时,∠AED=∠A'ED=45°,
如图,过D作DF⊥AC于F,过B作BG⊥A'E于G,则△DEF是等腰直角三角形,
∵DF∥BC,D是AB的中点,AC=8,BC=6,
∴AF=CF=AC=4,DF=
BC=3,
∴EF=3,CE=,
∴矩形BCEG中,BG=CE=1,BC=EG=6,
∵AE=, ∴A'E=7, ∴A'G=
,即A'G=BG,
∴在等腰Rt△A'BG中,A'B=.
②如图所示,A'在AC的下方,过D作DF⊥AC于F,过A'作A'G⊥BC于G,
由折叠可得∠AED=∠A'ED,
当A'E⊥AC时,∠AED=∠A'ED=135°,∠A'EF=90°,故∠DEF=45°,即△DEF是等腰直角三角形,
∴DF=EF=BC=3,
又∵AF=AC=4,
∴AE=1,EC=A'G,
∵A'E=AE=1,
∴CG=1,BG=BC+CG=7,即A'G=BG,
∴在等腰Rt△A'BG中,A'B=,
故答案为:或
.
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是( )
A. 6 B. 3 C. 2
D. 4.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个寻宝游戏的寻宝通道如图①所示,通道由在同一平面内的AB,BC,CA,OA, OB,OC组成。为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图像大致如图②所示,则寻宝者的行进路线可能为:
A. A→O→B B. B→A→C C. B→O→C D. C→B→O
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在中,
为
边上一点,过
点作
交
于点
,连接
,
为
的中点,连接
.
(观察猜想)
(1)①的数量关系是___________
②的数量关系是______________
(类比探究)
(2)将图①中绕点
逆时针旋转
,如图②所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(拓展迁移)
(3)将绕点
旋转任意角度,若
,请直接写出点
在同一直线上时
的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,
,
,
.点
从
出发沿
方向以每秒
的速度向终点
运动.点
从
出发沿
方向以每秒
的速度向点
运动、同时当点
运动停止时,点
随之停止运动.过点
作
交边
于点
,将
绕
的中点旋转180°得到
.过点
作
交射线
于点
,以
为边向右下方作正方形
,设点
的运动时间为
(秒).
(1)直接写出的长度(用含
的代数式表示).
(2)当点落在
上时,求
的值.
(3)当正方形与
有重合部分时,求正方形
与
重合图形部分的周长
与时间
的函数解析式.
(4)当直线与
的某一边垂直时,直接写出
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).
(1)求反比例函数的解析式及B点的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图 1、图 2 均是 6×6 的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为 1,点 A、B、C、D 均在格点上.在图 1、图 2 中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.
(1)在图 1 中以线段 AB 为边画一个△ABM,使∠ABM=45°,且△ABM 的面积为 6;
(2)在图 2 中以线段 CD 为边画一个四边形 CDEF,使∠CDE=∠CFE=90°,且四边形 CDEF 的面积为 8.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,动点P沿B→A→D→C→B路线运动,点M是AB边上的一点,且MB=AB,已知AB=4,BC=2,AP=2MP,则点P到边AD的距离为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要( )个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉( )个小正方体
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com