【题目】如图①,已知直线PQ∥MN,点A在直线PQ上,点C,D在直线MN上,连接AC,AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于点E.
(1)求∠AEC的度数;
(2)若将图①中的线段AD沿MN向右平移到A1D1如图②所示位置,此时A1E平分∠AA1D1,
CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数;
(3)若将图①中的线段AD沿MN向左平移到A1D1如图③所示位置,其他条件与(2)相同,求此时∠A1EC的度数(直接写出结果).
![]()
参考答案:
【答案】(1)130°;(2)130°;(3)40°.
【解析】(1)由直线PQ∥MN,∠ADC=∠QAD=30°,可得∠PAD=150°,再求∠PAE=75°,
可得∠CAE=25°;由∠PAC=∠ACN,求得∠ECA=25°,故∠AEC=180°﹣25°﹣25°;
(2)先求出∠QA1D1=30°,∠PA1D1=150°,再求出∠PA1E=∠EA1D1=75°,
再求出∠CAQ=130°,∠ACN=50°,根据平分线定义得∠ACE=25°,再利用四边形内角和性质可求∠CEA1;
(3)根据平行线性质和角平分线定义可求得∠QA1E=∠2=15°,∠ACE=∠ECN=∠1=25°,
所以∠CEA1=∠1+∠2=15°+25°.
解:(1)如图1所示:
![]()
∵直线PQ∥MN,∠ADC=30°,
∴∠ADC=∠QAD=30°,
∴∠PAD=150°,
∵∠PAC=50°,AE平分∠PAD,
∴∠PAE=75°,
∴∠CAE=25°,
可得∠PAC=∠ACN=50°,
∵CE平分∠ACD,
∴∠ECA=25°,
∴∠AEC=180°﹣25°﹣25°=130°;
(2)如图2所示:
![]()
∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,
∴∠QA1D1=30°,
∴∠PA1D1=150°,
∵A1E平分∠AA1D1,
∴∠PA1E=∠EA1D1=75°,
∵∠PAC=50°,PQ∥MN,
∴∠CAQ=130°,∠ACN=50°,
∵CE平分∠ACD1,
∴∠ACE=25°,
∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;
(3)如图3所示:
![]()
过点E作FE∥PQ,
∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,
∴∠QA1D1=30°,
∵A1E平分∠AA1D1,
∴∠QA1E=∠2=15°,
∵∠PAC=50°,PQ∥MN,
∴∠ACN=50°,
∵CE平分∠ACD1,
∴∠ACE=∠ECN=∠1=25°,
∴∠CEA1=∠1+∠2=15°+25°=40°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数y=mx2+(2m+1)x+2(m为实数).

(1)请探究该函数图象与x轴的公共点个数的情况(要求说明理由);
(2)在图中给出的平面直角坐标系中分别画出m=﹣1和m=1的函数图象,并根据图象直接写出它们的交点坐标;
(3)探究:对任意实数m,函数的图象是否一定过(2)中的点,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2
,
,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q. 
(1)求证:△APP′是等腰直角三角形;
(2)求∠BPQ的大小. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E是CD中点,连结OE.过点C作CF∥BD交线段OE的延长线于点F,连结DF.求证:
(1)△ODE≌△FCE;
(2)四边形ODFC是菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某停车场收费标准分为中型汽车和小型汽车两种,某两天这个停车场的收费情况如下表:
中型汽车数量
小型汽车数量
收取费用
第一天
15辆
35辆
360元
第二天
18辆
20辆
300元
(1)中型汽车和小型汽车的停车费每辆多少元?
(2)某天停车场共停车70辆,若收取的停车费用高于500元,则中型汽车至少有多少辆?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在
中,
,
,点
在直线
上运动(不与点
、
重合),点
在射线
上运动,且
,设
.(1)如图①,当点
在边
上时,且
,则
_______,
_______;(2)如图②,当点
运动到点
的左侧时,其他条件不变,请猜想
和
的数量关系,并说明理由;(3)当点
运动到点C的右侧时,其他条件不变,
和
还满足(2)中的数量关系吗?请画出图形,并说明理由.



-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,E,F,G,H分别是边AB,BC,CD,DA的中点,连接EF,FG,GH,HE.
(1)判断四边形EFGH的形状,并证明你的结论;
(2)当BD,AC满足什么条件时,四边形EFGH是正方形?请说明理由.

相关试题