精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形中,点. 沿直线折叠矩形,使点落在边上,与点重合.分别以所在的直线为轴,轴建立平面直角坐标系,抛物线经过两点.

1)求及点的坐标;

2)一动点从点出发,沿以每秒个单位长的速度向点运动, 同时动点从点出发,沿以每秒个单位长的速度向点运动, 当点运动到点时,两点同时停止运动.设运动时间为秒,当为何值时,以为顶点的三角形与相似?

3)点在抛物线对称轴上,点在抛物线上,是否存在这样的点与点 N,使以 为顶点的四边形是平行四边形?若存在,请直接写出点与点的坐标;若不存在,请说明理由.

【答案】1;(2)当时,以为顶点的三角形与相似;(3)存在符合条件的点,且它们的坐标为:①;③.

【解析】

1)先求出OE=6AE=4,设,根据勾股定理得到关于x方程组,求出点D坐标,根据待定系数法即可求解;

2)根据题意得到,继而得到,然后分 求解即可;

3)假设存在符合条件的点,分两种情况讨论:为平行四边形的对角线,为平行四边形的边,根据平行四边形性质即可求解.

1四边形为矩形,

由题意得,

由勾股定理得

,则

由勾股定理,得,解得

抛物线过点

抛物线对应函数的解析式为

,解得:

抛物线的解析式为:

2

由(1)可得

情况1:当

,即,解得:

情况2:当

,即,解得:

时,以为顶点的三角形与相似;

3)假设存在符合条件的点,分两种情况讨论:

为平行四边形的对角线,由于抛物线的对称轴经过中点,

若四边形是平行四边形,那么点必为抛物线顶点,则

平行四边形的对角线互相平分,

线段必被中点平分,

为平行四边形的边,则

,则

代入抛物线的解析式中,解得:

此时

代入抛物线的解析式中,解得:

此时

综上,存在符合条件的点,且它们的坐标为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知在扇形中,圆心角,半径

1)如图1,过点,交弧于点,再过点于点,则的长为_________的度数为_________

2)如图2,设点为弧上的动点,过点于点于点,点分别在半径上,连接,则

①求点运动的路径长是多少?

的长度是否是定值?如果是,请求出这个定值;若不是,请说明理由;

3)在(2)中的条件下,若点的外心,直接写出点运动的路经长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市要开展不忘初心,牢记使命主题演讲比,某中学将参加本校选拔赛的50名选手的成绩(满分为100分,得分为正整数)分成五组,并绘制了不完整的统计图表.

分数段

频数

频率

69.575.5

9

0.18

75.581.5

m

0.16

81.587.5

14

0.28

87.593.5

16

n

93.599.5

3

0.06

1)表中n   ,并在图中补全频数直方图.

2)甲同学的比赛成绩是50位参赛选手成绩的中位数,据此推测他的成绩落在   分数段内;

3)选拔赛时,成绩在93.599.5的三位选手中,男生2人,女生1人,学校从中随机确定2名选手参加全市决赛,请用列表法或树状图法求恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,MNPQ分别为边ABBCCDDA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,

①存在无数个四边形MNPQ是平行四边形;

②存在无数个四边形MNPQ是矩形;

③存在无数个四边形MNPQ是菱形;

④至少存在一个四边形MNPQ是正方形,

其中正确的结论的个数为(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点At0),Bt+20),Cn1),若射线OC上存在点P,使得△ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.

1)如图,t0

①若n0,则线段AB关于射线OC的等腰点的坐标是   

②若n0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;

2)若n,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1,图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.

1)在图1中画出以AB为底边的等腰直角三角形ABC,点C在小正方形的顶点上;

2)在图2中画出以AB为腰的等腰三角形ABD,点D在小正方形的顶点上,且ABD的面积为8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图,已知线段和点O,利用直尺和圆规作,使点O的内心(不写作法,保留作图痕迹);

2)在所画的中,若,则的内切圆半径是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,于点,动点从点出发以每秒个单位长度的速度向终点运动,当点与点不重合时,过点交边于点,以为边作使在点的下方,且,设重叠部分图形的面积为,点的运动时间为秒.

1的长为

2)当点落在边上时,求的值;

3)当重叠部分图形为四边形时,求之间的函数关系式;

4)若射线与边交于点连结,当的垂直平分线经过的顶点时,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图都是边长为的等边三角形,它们的边在同一条直线上,点重合,现将沿着直线向右移动,直至点重合时停止移动.在此过程中,设点移动的距离为,两个三角形重叠部分的面积为,则变化的函数图像大致为(

A. B.

C. D.

查看答案和解析>>

同步练习册答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷