【题目】如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造PCOD.在线段OP延长线上一动点E,且满足PE=AO.
(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;
(2)当点P运动的时间为
秒时,求此时四边形ADEC的周长是多少.
![]()
参考答案:
【答案】(1)证明见解析;(2) 四边形ADEC的周长为6
+3
.
【解析】
(1)连接CD交AE于F,根据平行四边形的性质得到CF=DP,OF=PF,根据题意得到AF=EF,又CF=DP,根据平行四边形的判定定理证明即可;
(2)根据题意计算出OC、OP的长,根据勾股定理求出AC、CE,根据平行四边形的周长公式计算即可.
(1)证明:如答图,连接CD交AE于F.
![]()
∵四边形PCOD是平行四边形,
∴CF=DF,OF=PF.
∵PE=AO,
∴AF=EF.
又∵CF=DF,
∴四边形ADEC为平行四边形.
(2)解:当点P运动的时间为
秒时,
OP=
,OC=3,
则OE=
.
由勾股定理,得AC=
=3
,
CE=
=
.
∵四边形ADEC为平行四边形,
∴四边形ADEC的周长为(3
+
)×2=6
+3
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.
(1)判断∠ABE与∠ACD的数量关系,并说明理由;
(2)求证:过点A、F的直线垂直平分线段BC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀把它均分成四个小长方形,然后按图②的形状拼成一个正方形.
(1)你认为图②中的阴影部分的正方形的边长等于多少?
(2)请用两种不同的方法求图②中阴影部分的面积.
(3)观察图②你能写出下列三个代数式之间的等量关系吗?
代数式:(m+n)2,(m-n)2,mn.
(4)根据(3)题中的等量关系,解决如下问题:
已知a+b=7,ab=5,求(a-b)2的值.(写出过程)

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)-23+
(2 018+3)0-
;(2)
;(3)(-2+x)(-2-x); (4)(a+b-c)(a-b+c).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某次篮球联赛初赛阶段,每队有
场比赛,每场比赛都要分出胜负,每队胜一场得
分, 负一场得
分,积分超过
分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为
分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB,CD相交于点O,OA平分∠EOC.

(1)若∠EOC=70°,求∠BOD的度数;
(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了了解九年级学生(共450人)的身体素质情况,体育老师对九(1)班的50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制了如下部分频数分布表和部分频数分布直方图.
组别
次数x
频数(人数)
A
80≤x<100
6
B
100≤x<120
8
C
120≤x<140
m
D
140≤x<160
18
E
160≤x<180
6

请结合图表解答下列问题:
(1)表中的m=;
(2)请把频数分布直方图补完整;
(3)这个样本数据的中位数落在第组;
(4)若九年级学生一分钟跳绳次数(x)合格要求是x≥120,则估计九年级学生中一分钟跳绳成绩不合格的人数.
相关试题