【题目】如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
![]()
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.
参考答案:
【答案】(1)菱形;(2)24.
【解析】试题分析:(1)根据题意得出平行四边形,根据矩形的性质得出邻边相等,则判定为菱形;(2)连接OE,根据矩形和菱形的性质得出OE=BC=8,然后计算面积.
试题解析:(1)四边形OCED是菱形,
∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
在矩形ABCD中,OC=OD,
∴四边形OCED是菱形
(2)连结OE.由菱形OCED得:CD⊥OE,
∴OE∥BC
又CE∥BD,
∴四边形BCEO是平行四边形,
∴OE=BC=8,
∴S四边形OCED=![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】代数式:①-x;②x2+x-1;③
;④
;⑤
;⑥πm3y;⑦
;⑧
.(1)请上述代数式的序号分别填在相应的圆圈内:

(2)其中次数最高的多项式是__________次_________项式;
(3)其中次数最高的单项式的次数是____________,系数是____________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=
x+6的图象与x轴、y轴分别交于A、B两点,点C与点A关于y轴对称.动点P、Q分别在线段AC、AB上(点P与点A、C不重合),且满足∠BPQ=∠BAO。(1)求点A、 B的坐标及线段BC的长度;
(2)当点P在什么位置时,△APQ≌△CBP,说明理由;
(3)当△PQB为等腰三角形时,求点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】点P,Q在数轴上分别表示的数分别为p,q,我们把p,q之差的绝对值叫做点P,Q之间的距离,即
.如图,在数轴上,点A,B,O,C,D的位置如图所示,则
;
;
.请探索下列问题:
(1)计算
____________,它表示哪两个点之间的距离?________________________.(2)点M为数轴上一点,它所表示的数为x,用含x的式子表示PB=____________;当PB=2时,x=____________;当x=____________时,|x+4|+|x-1|+|x-3|的值最小.
(3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值为________________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距高是
;③AF=CF;④△ABF的面积为
其中一定成立的有( )个.
A. 1B. 2C. 3D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;

-
科目: 来源: 题型:
查看答案和解析>>【题目】为充分发挥市场机制和价格杠杆在水资源配置中的作用,促进节约用水,提高用水效率,2017年7月1日起某地实行阶梯水价,价目如右表(注:水费按月结算,m3表示立方米):例:某户居民5月份共用水23m3,则应缴水费3×18+4×(23-18)=74(元).

(1)若A居民家1月份共用水12m3,则应缴水费__________元;
(2)若B居民家2月份共缴水费66元,则用水__________m3;
(3)若C居民家3月份用水量为am3(a低于20m3,即a<20),且C居民家3、4两个月用水量共40m3,求3、4两个月共缴水费多少元?(用含a的代数式表示,不要求化简)
(4)在(3)中,当a=19时,求C居民家3、4两个月共缴水费多少元?
相关试题