【题目】如图,在由边长为1的小正方形组成的5×6的网格中,△ABC的三个顶点均在格点上,请按要求解决下列问题:
(1)通过计算判断△ABC的形状;
(2)在图中确定一个格点D,连接AD、CD,使四边形ABCD为平行四边形,并求出 □ABCD的面积.
![]()
参考答案:
【答案】(1)△ABC是直角三角形;(2)□ABCD的面积为10.
【解析】
试题(1)在Rt△AEB中根据勾股定理求出AB的长,同理,根据勾股定理求出BC、AC的长,然后利用勾股定理的逆定理即可判断△ABC为直角三角形;
(2)根据两组对边分别平行的四边形是平行四边形可得过点A作AD∥BC,过点C作CD∥AB,直线AD和CD的交点就是D的位置.根据平行四边形ABCD的面积为△ABC面积的2倍即可得出平行四边形的面积.
试题解析:
解:(1)由题意可得,AB=
=
,AC=
=2
,BC=
=5,
∵(
)2+(2
)2=25=52,即AB2+AC2=BC2,
∴△ABC是直角三角形;
(2)过点A作AD∥BC,过点C作CD∥AB,直线AD和CD的交点就是D的位置,格点D的位置如图,
![]()
∴平行四边形ABCD的面积为:AB×AC=
×2
=10.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校公用10分钟.下列说法:
①公交车的速度为400米/分钟;
②小刚从家出发5分钟时乘上公交车;
③小刚下公交车后跑向学校的速度是100米/分钟;
④小刚上课迟到了1分钟.
其中正确的个数是( )
A.4个
B.3个
C.2个
D.1个 -
科目: 来源: 题型:
查看答案和解析>>【题目】(7分)如图,△ABC中,∠ACB=90°,D.E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.

(1)求证:四边形ACEF是平行四边形;
(2)若四边形ACEF是菱形,求∠B的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为( )

A.
B.
C.2
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m的高空C处时,测得A处渔政船的俯角为45°,测得B处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB是( )

A.3000
m
B.3000(
+1)m
C.3000(
-1)m
D.1500
m -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,E为ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则ABCD的面积为( )

A.30
B.27
C.14
D.32 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD分别等于( )

A.40°,80°
B.50°,100°
C.50°,80°
D.40°,100°
相关试题