【题目】如图,在平面直角坐标系中,已知A(0,5), B(a,b),且a,b满足b=
+
-1.
(1)如图,求线段AB的长;
(2)如图,直线CD与x轴、y轴正半轴分别交于点C,D,∠OCD=45°,第四象限的点P(m,n)在直线CD上,且mn=-6,求OP2-OC2的值;
(3)如图,若点D(1,0),求∠DAO +∠BAO的度数.
![]()
参考答案:
【答案】(1)
;(2)12 ;(3)45°
【解析】
(1)根据b=
+
-1可求得a、b的值,得到B点的坐标,根据两点间坐标公式即可求解.
(2)根据直线CD与x轴、y轴正半轴分别交于点C,D,∠OCD=45°,可知直线CD平行于y= -x,可设直线CD解析式为y= -x +b,代入P点坐标,得到m、n、b的关系,代入计算即可.
(3)取点D关于y轴的对称点
,运用两点间坐标公式及勾股定理逆定理可判断△AB
是等腰直角三角形,即可求得∠BA
的值,等量代换即可.
(1)∵b=
+
-1
∴a=4 ,b= -1
∴B点坐标为:(4,-1)
∵A(0,5)
∴AB=
)![]()
(2)∵直线CD与x轴、y轴正半轴分别交于点C,D,∠OCD=45°
∴直线CD平行于y= -x
设直线CD解析式为y= -x +b
则B点坐标为(b,0)
把点P(m,n)代入得:n= -m +b
∴b= m+n
∴OP2-OC2=![]()
∵mn=-6
∴OP2-OC2![]()
(3)取点D关于y轴的对称点
,则∠DAO=∠
,
∴∠DAO +∠BAO=∠
+∠BAO=∠BA![]()
∵点D(1,0)
∴
(-1,0)
由(1)得:A(0,5),B(4,-1)
∴A
=
,
,![]()
∴A
,![]()
∴△A
是等腰直角三角形
∴∠DAO +∠BAO=∠BA
=45°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在矩形
中,
,点
沿
边从点
开始向点
以
的速度移动,点
沿
边从点
开始向点
以
的速度移动,如果点
同时出发,用
表示移动的时间(
).(1)当
为何值时,
为等腰三角形?(2)求四边形
的面积,并探索一个与计算结果有关的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t天完成.
(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;
(2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?
【答案】(1)
;(2)
【解析】试题分析:(1)根据实际意义可列出夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;
(2)根据题意列出t﹣4对应的式子
,与(1)中的式子相减即可.试题解析:(1)由题意可得,函数关系式为:w=
(
);(2)
=
=
.(或
).答:每天多做
(或
)件夏凉小衫才能完成任务.考点:反比例函数的应用.
【题型】解答题
【结束】
13【题目】如图所示,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O左侧固定位置B处悬挂重物A,在中点O右侧用一个弹簧秤向下拉,改变弹簧秤与点O的距离x(cm),观察弹簧秤的示数y(N)的变化情况。实验数据记录如下:
x(cm)
…
10
15
20
25
30
…
y(N)
…
30
20
15
12
10
…
(1)把上表中x,y的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点并观察所得的图象,猜测y(N)与x(cm)之间的函数关系,并求出函数关系式;
(2)当弹簧秤的示数为24N时,弹簧秤与O点的距离是多少cm?
随着弹簧秤与O点的距离不断减小,弹簧秤上的示数将发生怎样的变化?


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知:在四边形ABFC中,
=90
的垂直平分线EF交BC于点D,交AB于点E,且CF=AE
(1)试探究,四边形BECF是什么特殊的四边形;
(2)当
的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.(特别提醒:表示角最好用数字)
-
科目: 来源: 题型:
查看答案和解析>>【题目】你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)四面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.
(1)写出y与S的函数关系式;
(2)求当面条粗1.6 mm2时,面条的总长度是多少米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.

(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;
(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A,B分别在x轴、y轴上,点D在第一象限内,DC⊥x轴于点C,AO=DC=2,AB=DA=
,反比例函数y=
(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;
(2)求k的值;
(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.

相关试题