【题目】已知关于x的方程
只有一个实数根,则实数a的取值范围是( )
A.a>0
B.a<0
C.a≠0
D.a为一切实数
参考答案:
【答案】C
【解析】解:∵方程
只有一个实数根, ∴函数y=
和函数y=x2﹣2x+3只有一个交点,
∵函数y=x2﹣2x+3=(x﹣1)2+2,开口向上,对称轴x=1,顶点为(1,2),抛物线交y轴的正半轴,
∴反比例函数y=
应该在一或二象限,
∴a≠0,
故选C.
【考点精析】本题主要考查了反比例函数的图象和二次函数的图象的相关知识点,需要掌握反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点;二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2 , (这里规定:线段是面积为0的三角形)

解答下列问题:
(1)当x=2s时,y=cm2;当x=
s时,y=cm2 .
(2)当5≤x≤14 时,求y与x之间的函数关系式.
(3)当动点P在线段BC上运动时,求出
S梯形ABCD时x的值.
(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中是真命题的是( )
A.经过直线外一点,有且仅有一条直线与一线与已知直线垂直
B.平分弦的直径垂直于弦
C.对角线互相平分且垂直的四边形是菱形
D.反比例函数y=
,当k<0时,y随x的增大而增大 -
科目: 来源: 题型:
查看答案和解析>>【题目】定义:底与腰的比是
的等腰三角形叫做黄金等腰三角形.
如图,已知△ABC中,AC=BC,∠C=36°,BA1平分∠ABC交AC于A1 .
(1)证明:AB2=AA1AC;
(2)探究:△ABC是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC=1)
(3)应用:已知AC=a,作A1B1∥AB交BC于B1 , B1A2平分∠A1B1C交AC于A2 , 作A2B2∥AB交B2 , B2A3平分∠A2B2C交AC于A3 , 作A3B3∥AB交BC于B3 , …,依此规律操作下去,用含a,n的代数式表示An﹣1An . (n为大于1的整数,直接回答,不必说明理由) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,
且
于点E,与CD相交于点F,
于点H,交BE于点G.下列结论:①BD=CD;②AD+CF=BD;③
;④AE=CF.其中正确的是____________(填序号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】探索性问题:
已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:
(1)请直接写出a、b、c的值.a= ,b= ,c= ;
(2)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.
①t秒钟过后,AC的长度为 (用t的关系式表示);
②请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.
(1)求证:△EDF≌△CBF;
(2)求∠EBC.

相关试题