【题目】如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.
(1)求∠ABC的度数;
(2)如果AC=
,求DE的长.
![]()
参考答案:
【答案】(1)120°;(2)
【解析】试题分析:(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据菱形的四条边都相等可得AB=AD,然后求出AB=AD=BD,从而得到△ABD是等边三角形,再根据等边三角形的性质求出△DAB=60°,然后根据两直线平行,同旁内角互补求解即可;
(2)根据菱形的对角线互相平分求出AO,再根据等边三角形的性质可得DE=AO.
解:(1)∵E为AB的中点,DE⊥AB,
∴AD=DB,
∵四边形ABCD是菱形,
∴AB=AD,
∴AD=DB=AB,
∴△ABD为等边三角形.
∴∠DAB=60°.
∵菱形ABCD的边AD∥BC,
∴∠ABC=180°﹣∠DAB=180°﹣60°=120°,
即∠ABC=120°;
(2)∵四边形ABCD是菱形,
∴BD⊥AC于O,AO=AC=×4=2,
由(1)可知DE和AO都是等边△ABD的高,
∴DE=AO=2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).
(1)如图1,连接DQ平分∠BDC时,t的值为 ;
(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;
(3)请你继续进行探究,并解答下列问题:
①证明:在运动过程中,点O始终在QM所在直线的左侧;
②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:
候选人
面试
笔试
形体
口才
专业水平
创新能力
甲
86
90
96
92
乙
92
88
95
93
若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照5:5:4:6的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?
-
科目: 来源: 题型:
查看答案和解析>>【题目】把一个图案进行旋转变换,选择不同的旋转中心、不同的,会有不同的效果.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列计算正确的是( )
A.a+a=2a
B.b3b3=2b3
C.a3÷a=a3
D.(a5)2=a7 -
科目: 来源: 题型:
查看答案和解析>>【题目】化简2a﹣[3b﹣5a﹣(2a﹣7b)]的结果是( )
A. ﹣7a+10b B. 5a+4b C. ﹣a﹣4b D. 9a﹣10b
-
科目: 来源: 题型:
查看答案和解析>>【题目】某品牌自行车1月份销售量为100辆,每辆车售价相同,2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元,2月份与1月份的销售总额相同,则1月份的售价为( )
A.720元
B.800元
C.880元
D.1080元
相关试题