【题目】如图,在等边△ABC中,M是边BC延长线上一点,连接AM交△ABC的外接圆于点D,延长BD至N,使得BN=AM,连接CN、MN,
(1)求证:△CMN是等边三角形;
(2)判断CN与⊙O的位置关系,并说明理由;
(3)若AD:AB=3:4,BN=4,求等边△ABC的边长.
![]()
参考答案:
【答案】(1)证明见解析;(2)CN是⊙O的切线,理由见解析;(3)等边△ABC的边长是3.
【解析】试题分析:(1)根据全等三角形的判定定理得到△BCN≌△ACM,由全等三角形的性质得到CN=CM,∠BCN=∠ACM,求得∠MCN=∠ACB=60°,即可得到结论;
(2)根据全等三角形的性质得到∠ACO=∠BCO=
ACB=30°,根据角的和差得到∠OCN=90°,根据切线的判定定理得到结论;
(3)根据相似三角形的判定和性质即可得到结论.
试题解析:解:(1)在△BCN与△ACM中,∵BC=AC,∠CBN=∠CAM,BN=AM,∴△BCN≌△ACM,∴CN=CM,∠BCN=∠ACM,∴∠BCN﹣∠ACN=∠ACM﹣∠ACN,即∠MCN=∠ACB=60°,∴△CMN是等边三角形;
(2)连接OA.OB.OC,在△BOC与△AOC中,∵OA=OB,AC=BC,OC=OC,∴△BOC≌△AOC,∴∠ACO=∠BCO=
∠ACB=30°,∵∠ACB=∠MCN=60°,∴∠ACN=60°,∴∠OCN=90°,∴OC⊥CN,∴CN是⊙O的切线;
(3)∵∠ADB=∠ACB=60°,∴∠ADB=∠ABC,∵∠BAD=∠MAB,∴△ABD∽△AMB,∴
,∵AM=BN=4,∴AB=3,∴等边△ABC的边长是3.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】平面直角坐标系中有正方形AOBC,O为坐标原点,点A、B分别在y轴、x轴正半轴上,点P、E、F分别为边BC、AC、OB上的点,EF⊥OP于M.
(1)如图1,若点E与点A重合,点A坐标为(0,8),OF=3,求P点坐标;
(2)如图2,若点E与点A重合,且P为边BC的中点,求证:CM=2CP;
(3)如图3,若点M为线段OP的中点,连接AB交EF于点N,连接NP,试探究线段OP与NP的数量关系,并证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线的最高点到路面的距离为6米.
(1)按如图所示建立平面直角坐标系,求表示该抛物线的函数表达式;
(2)一辆货运卡车高为4m,宽为2m,如果该隧道内设双向车道,那么这辆货车能否安全通过?

-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是

A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知函数y1=x+5的图象与x轴交于点A,一次函数y2=-2x+b的图象分别与x轴、y轴交于点B,C,且与y1=x+5的图象交于点D(m,4).

(1)求m,b的值;
(2)若y1>y2,则x的取值范围是 ;
(3)求四边形AOCD的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两位同学在一次实验中统计了某一结果出现的频率,给出的统计图如图所示,则 符合这一结果的实验可能是( )

A. 掷一枚正六面体的骰子,出现6点的概率
B. 掷一枚硬币,出现正面朝上的概率
C. 任意写出一个整数,能被2整除的概率
D. 一个袋子中装着只有颜色不同,其他都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.

求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.
相关试题