【题目】如图,在△BCE中,点A时边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.
(1)求证:CB是⊙O的切线;
(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.
![]()
参考答案:
【答案】(1)详见解析;(2)
.
【解析】
试题分析:(1)根据已知条件易证△CDO≌△CBO,即可得∠CBO=∠CDO=90°,所以CB是⊙O的切线;(2)根据条件证明△ADG≌△FOG,可得S△ADG=S△FOG,再由S阴=S扇形ODF,利用扇形面积公式计算即可.
试题解析:(1)证明:连接OD,与AF相交于点G,
∵CE与⊙O相切于点D,
∴OD⊥CE,
∴∠CDO=90°,
∵AD∥OC,
∴∠ADO=∠1,∠DAO=∠2,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠1=∠2,
在△CDO和△CBO中,
,
∴△CDO≌△CBO,
∴∠CBO=∠CDO=90°,
∴CB是⊙O的切线.
![]()
(2)由(1)可知∠3=∠BCO,∠1=∠2,
∵∠ECB=60°,
∴∠3=
∠ECB=30°,
∴∠1=∠2=60°,
∴∠4=60°,
∵OA=OD,
∴△OAD是等边三角形,
∴AD=OD=OF,∵∠1=∠ADO,
在△ADG和△FOG中,
,
∴△ADG≌△FOG,
∴S△ADG=S△FOG,
∵AB=6,
∴⊙O的半径r=3,
∴S阴=S扇形ODF=
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=2(x+1)2﹣3的最小值是( )
A.1
B.﹣1
C.3
D.﹣3 -
科目: 来源: 题型:
查看答案和解析>>【题目】满足-3x>-12的非负整数有_________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,由长度为1个单位的若干小正方形组成的网格图中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;
(2)三角形ABC的面积为
(3)以AC为边作与△ABC全等的三角形(只要作出一个符合条件的三角形即可);
(4)在直线l上找一点P,使PB+PC的长最短.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.
(1)求证:CE是⊙O的切线;
(2)若AC=4,BC=2,求BD和CE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若m+n=-1,则(m+n)2-2m-2n的值是___________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个木工有两根长为40cm和60cm的木条,要另外找一根木条,钉成一个三角形木架,则第三根木条的长x的值应满足的不等式是________________.
相关试题