【题目】张老师为了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: ![]()
(1)张老师一共调查了多少名同学?
(2)C类女生有多少名?D类男生有多少名?并将两幅统计图补充完整;
(3)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位学生进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
参考答案:
【答案】
(1)解:由条形图可知,调查结果分很好的有:2+3=5人,
由扇形图可知,调查结果分很好的人数所占的百分比为20%,
则张老师一共调查的人数为:5÷20%=25人
(2)解:C类学生:25×24%=6人,
则C类女生为:6﹣2=4人,
D类男生为:25﹣5﹣10﹣6﹣2=2人,
B类学生所占的百分比为:10÷25=40%,D类学生所占的百分比为:4÷25=16%,
将两幅统计图补充完整如图
![]()
(3)解:所以可能出现的结果有20种,所选两位同学恰好是一位男同学和一位女同学的可能有10种,
则所选两位同学恰好是一位男同学和一位女同学的概率为: ![]()
【解析】(1)根据条形图和扇形图,得到调查结果分很好的人数以及所占的百分比,计算即可;(2)求出C类女生和D类男生人数,求出B类学生所占的百分比和D类学生所占的百分比即可;(3)根据概率公式计算即可.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=ax+b的图象与反比例函数y=
(x>0)的图象交于点P(m,4),与x轴交于点A(﹣3,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC. 
(1)求反比例函数与一次函数的解析式;
(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.

(1)求证:△ABC≌△EAF;
(2)试判断四边形EFDA的形状,并证明你的结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某校科技创新兴趣小组用他们设计的机器人,在平坦的操场上进行走展示.输入指令后,机器人从出发点A先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米到达终止点B.求终止点B与原出发点A的距离AB.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点E、F在四边形ABCD的对角线BD所在的直线上,且BE=DF,AE∥CF,请再添加一个条件(不要在图中再增加其它线段和字母),能证明四边形ABCD是平行四边形,并证明你的想法.
你所添加的条件:____________________________________;

证明:
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了8次测试,测试成绩(单位:环)如下表:
第一次
第二次
第三次
第四次
第五次
第六次
第七次
第八次
甲
10
8
9
8
10
9
10
8
乙
10
7
10
10
9
8
8
10
(1)根据表格中的数据,计算出甲的平均成绩是 9 环,乙的平均成绩是 9 环;
(2)分别计算甲、乙两名运动员8次测试成绩的方差;
(3)根据(1)(2)计算的结果,你认为推荐谁参加全国比赛更合适,并说明理由.
相关试题