【题目】某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.
(1)每个气排球和每个篮球的价格各是多少元?
(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?
参考答案:
【答案】
(1)
【解答】解:设每个气排球的价格是x元,每个篮球的价格是y元.
根据题意得:![]()
解得:![]()
所以每个气排球的价格是50元,每个篮球的价格是80元.
(2)
设购买气排球x个,则购买篮球(50﹣x)个.
根据题意得:50x+80(50﹣x)≤3200
解得x≥
,
又∵排球的个数小于30个,
∴排球的个数可以为27,28,29,
∵排球比较便宜,则购买排球越多,总费用越低,
∴当购买排球29个,篮球21个时,费用最低.
29×50+21×80=1450+1680=3130元.
【解析】(1)设每个气排球的价格是x元,每个篮球的价格是y元,根据购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元列方程组求解即可;
(2)设购买气排球x个,则购买篮球(50﹣x)个,根据总费用不超过3200元,且购买气排球的个数少于30个确定出x的范围,从而可计算出最低费用.
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于函数y=
,下列说法错误的是( )
A.这个函数的图象位于第一、第三象限
B.这个函数的图象既是轴对称图形又是中心对称图形
C.当x>0时,y随x的增大而增大
D.当x<0时,y随x的增大而减小 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB绕点O逆时针旋转90°得到△COD,则旋转过程中形成的阴影部分的面积为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左侧),点C是此抛物线的顶点.
(1)求点A、B、C的坐标;
(2)点C在反比例函数
(k≠0)的图象上,求反比例函数的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,船A、B在东西方向的海岸线MN上,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,在船B的北偏西37°方向上,AP=30海里.

(1)尺规作图:过点P作AB所在直线的垂线,垂足为E(要求:保留作图痕迹,不写作法);
(2)求船P到海岸线MN的距离(即PE的长);
(3)若船A、船B分别以20海里/时、15海里/时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,AD为弦,∠DBC=∠A.

(1)求证:BC是⊙O的切线;
(2)连接OC,如果OC恰好经过弦BD的中点E,且tanC=
,AD=3,求直径AB的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥x轴,点A是射线BG上一个动点(点A与点B不重合),在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与x轴交于点F,过点A作AC⊥OA,交射线EF于点C,连接OC、CD.设点A的横坐标为t.

(1)用含t的式子表示点E的坐标为 ;
(2)当t为何值时,∠OCD=180°?
(3)当点C与点F不重合时,设△OCF的面积为S,求S与t之间的函数解析式.
相关试题