【题目】如图,已知直线y=
x与反比例函数y=
(k>0)的图象交于A,B两点,且点A的横坐标为4.
(1)求k的值.
(2)若反比例函数y=
的图象上一点C的纵坐标为8,求△AOC的面积.
(3)若过原点O的另一条直线l交反比例函数y=
(k>0)的图象于P,Q两点(点P在第一象限),以A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.
![]()
参考答案:
【答案】(1)8(2)15(3) (2,4)或(8,1)
【解析】(1)先根据直线的解析式求出A点的坐标,然后将A点坐标代入双曲线的解析式中即可求出k的值;
(2)由(1)得出的双曲线的解析式,可求出C点的坐标,由于△AOC的面积无法直接求出,因此可通过作辅助线,通过其他图形面积的和差关系来求得.(解法不唯一);
(3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么△POA的面积就应该是四边形面积的四分之一即6.可根据双曲线的解析式设出P点的坐标,然后参照(2)的三角形面积的求法表示出△POA的面积,由于△POA的面积为6,由此可得出关于P点横坐标的方程,即可求出P点的坐标.
(1)∵点A横坐标为4,
把x=4代入y=
x中
得y=2,
∴A(4,2),
∵点A是直线y=
x与双曲线y=
(k>0)的交点,
∴k=4×2=8;
(2)如图,
![]()
∵点C在双曲线上,
当y=8时,x=1,
∴点C的坐标为(1,8).
过点A、C分别做x轴、y轴的垂线,垂足为M、N,得矩形DMON.
∵S矩形ONDM=32,S△ONC=4,S△CDA=9,S△OAM=4.
∴S△AOC=S矩形ONDM-S△ONC-S△CDA-S△OAM=32-4-9-4=15;
(3)∵反比例函数图象是关于原点O的中心对称图形,
∴OP=OQ,OA=OB,
∴四边形APBQ是平行四边形,
∴S△POA=S平行四边形APBQ×
=
×24=6,
设点P的横坐标为m(m>0且m≠4),
得P(m,
),
过点P、A分别做x轴的垂线,垂足为E、F,
∵点P、A在双曲线上,
∴S△POE=S△AOF=4,
若0<m<4,如图,
![]()
∵S△POE+S梯形PEFA=S△POA+S△AOF,
∴S梯形PEFA=S△POA=6.
∴
(2+
)(4-m)=6.
∴m1=2,m2=-8(舍去),
∴P(2,4);
若m>4,如图,
![]()
∵S△AOF+S梯形AFEP=S△AOP+S△
∴S梯形PEFA=S△POA=6.
∴
(2+
)(m-4)=6,
解得m1=8,m2=-2(舍去),
∴P(8,1).
∴点P的坐标是P(2,4)或P(8,1).
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:
①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac
其中正确的结论的有( )
A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.
(1)求线段AB的长|AB|;
(2)设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,求x的值;
(3)若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时,下列两个结论:
①|PM|+|PN|的值不变;②|PN|﹣|PM|的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:
①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac
其中正确的结论的有( )
A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知在纸面上有一数轴(如图),折叠纸面.
(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与数 _________ 表示的点重合;
(2)若﹣1表示的点与5表示的点重合,回答以下问题:
①13表示的点与数 _________ 表示的点重合;
②若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】把下列各数的序号填到相应的横线上:
①+5,②-3,③0,④-1.414,⑤17,⑥-
.正整数:______________________________________________________;
负分数:______________________________________________________;
负有理数:____________________________________________________。
-
科目: 来源: 题型:
查看答案和解析>>【题目】某厂仓库储存了部分原料,按原计划每时消耗2 t,可用60 h.由于技术革新,实际生产能力有所提高,即每时消耗的原料量大于计划消耗的原料量.设现在每时消耗原料x(单位:t),库存的原料可使用的时间为y(单位:h).
(1)写出y关于x的函数解析式,并求出自变量的取值范围;
(2)若恰好经过24 h才有新的原料进厂,为了使机器不停止运转,则x应控制在什么范围内?
相关试题