【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE. ![]()
(1)求证:AC平分∠DAB;
(2)探究线段PC,PF之间的大小关系,并加以证明;
(3)若tan∠PCB=
,BE=
,求PF的长.
参考答案:
【答案】
(1)解:连接OC.
∵OA=OC,
∴∠OAC=∠OCA.
∵PC是⊙O的切线,AD⊥CD,
∴∠OCP=∠D=90°,
∴OC∥AD.
∴∠CAD=∠OCA=∠OAC.即AC平分∠DAB
(2)解:PC=PF.
证明:∵AB是直径,
∴∠ACB=90°,
∴∠PCB+∠ACD=90°
又∵∠CAD+∠ACD=90°,
∴∠CAB=∠CAD=∠PCB.
又∵∠ACE=∠BCE,∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE.
∴∠PFC=∠PCF.
∴PC=PF
(3)解:连接AE.
![]()
∵∠ACE=∠BCE,
∴
=
,
∴AE=BE.
又∵AB是直径,
∴∠AEB=90°.
AB=
,
∴OB=OC=5.
∵∠PCB=∠PAC,∠P=∠P,
∴△PCB∽△PAC.
∴
.
∵tan∠PCB=tan∠CAB=
.
∴
=
.
设PB=3x,则PC=4x,在Rt△POC中,(3x+5)2=(4x)2+52,
解得x1=0,
.
∵x>0,∴
,
∴PF=PC=
.
【解析】(1)连接OC,根据切线的性质可得OC⊥CD,则AD∥OC,根据等边对等角,以及平行线的性质即可证得;(2)根据圆周角定理以及三角形的外角的性质定理证明∠PFC=∠PCF,根据等角对等边即可证得;(3)证明△PCB∽△PAC,根据相似三角形的性质求得PB与PC的比值,在直角△POC中利用勾股定理即可列方程求解.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC=10,BC=12,矩形DEFG的顶点位于△ABC的边上,设EF=x,S四边形DEFG=y.

(1)填空:自变量x的取值范围是;
(2)求出y与x的函数表达式;
(3)请描述y随x的变化而变化的情况. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点C,其顶点记为M,自变量x=﹣1和x=5对应的函数值相等.若点M在直线l:y=﹣12x+16上,点(3,﹣4)在抛物线上.
(1)求该抛物线的解析式;
(2)设y=ax2+bx+c对称轴右侧x轴上方的图象上任一点为P,在x轴上有一点A(﹣
,0),试比较锐角∠PCO与∠ACO的大小(不必证明),并写出相应的P点横坐标x的取值范围.
(3)直线l与抛物线另一交点记为B,Q为线段BM上一动点(点Q不与M重合),设Q点坐标为(t,n),过Q作QH⊥x轴于点H,将以点Q,H,O,C为顶点的四边形的面积S表示为t的函数,标出自变量t的取值范围,并求出S可能取得的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为 n mile.(结果取整数,参考数据:
≈1.7,
≈1.4)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.
类别
A
B
C
D
E
节目类型
新闻
体育
动画
娱乐
戏曲
人数
12
30
m
54
9

请你根据以上的信息,回答下列问题:
(1)被调查学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.
(2)被调查学生的总数为人,统计表中m的值为 , 统计图中n的值为 .
(3)在统计图中,E类所对应扇形的圆心角的度数为 .
(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数. -
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?
相关试题