【题目】在平行四边形ABCD中,AB=6,AD=8,∠B是锐角,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处.如果AE过BC的中点,则平行四边形ABCD的面积等于( )
A. 48 B. 10
C. 12
D. 24![]()
参考答案:
【答案】C
【解析】设AE与BC交于O点,O点是BC的中点.
∵四边形ABCD是平行四边形,∴∠B=∠D.AB∥CD,
又由折叠的性质推知∠D=∠E,CE=CD
∴∠B=∠E.CE=AB
∴△ABO和△ECO中
,
所以△ABO≌△CEO(AAS),所以AO=CO=4,OE=OB=4.
∴AE=AD=8.
∴△AED为等腰三角形,又C为底边中点,故三线合一可知∠ACE=90°,
从而由勾股定理求得AC=
.
平行四边形ABCD的面积=AC×CD=12
.
故选:C.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】根据题意设未知数,并列出方程(不必求解).
(1)有两个工程队,甲队人数30名,乙队人数10名,问怎样调整两队的人数,才能使甲队的人数是乙队人数的7倍.
(2)有一个班的同学准备去划船,租了若干条船,他们计算了一下,如果比原计划多租1条船,那么正好每条船坐6人;如果比原计划少租1条船,那么正好每条船坐9人.问这个班共有多少名同学?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为( )

A. 48cm B. 36cm C. 24cm D. 18cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.

(1)喜爱动画的学生人数和所占比例分别是多少?
(2)请将条形统计图补充完整;
(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某超市规定:凡一次购买大米160kg以上可以按原价打折出售,购买160kg(包括160kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要600元;若多买40kg,则按打折价格付款,恰巧需要也是600元.
(1)求小明家原计划购买大米数量x(千克)的范围;
(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图所示的一张平行四边形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE.
(1)求证:四边形AFCE是菱形.
(2)若AB=8cm,∠B=90°,△ABF的面积为24cm2,求菱形AFCE的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为提高饮水质量,越来越多的居民开始选购家用净水器.一商家抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.
(1)求A、B两种型号家用净水器各购进了多少台;
(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元?(注:毛利润=售价﹣进价)
相关试题