【题目】中考前各校初三学生都要进行体育测试,某次中考体育测试设有A、B两处考点,甲、乙、丙三名学生各自随机选择其中的一处进行中考体育测试,请用表格或树状图分析:
(1)求甲、乙、丙三名学生在同一处进行体育测试的概率;
(2)求甲、乙、丙三名学生中至少有两人在B处进行体育测试的概率.
参考答案:
【答案】(1)
(2)
【解析】试题分析:(1)画树状图展示所有8种等可能的结果数,再找出甲、乙、丙三名学生在同一处进行体育测试的结果数,然后根据概率公式求解即可;
(2)找出甲、乙、丙三名学生中至少有两人在B处进行体育测试的结果数,然后根据概率公式求解即可.
试题解析:(1)画树状图为:
![]()
共有8种等可能的结果数,其中甲、乙、丙三名学生在同一处进行体育测试的结果数为2,
所以甲、乙、丙三名学生在同一处进行体育测试的概率P=
;
(2)甲、乙、丙三名学生至少有两人在B处进行体育测试的结果数为4, 所以甲、乙、丙三名学生至少有两人在B处进行体育测试的概率P=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上A,B两点对应的数分别为-2和8,P为数轴上一点,对应的数为x.
(1)线段PA的长度可表示为_________(用含
的式子表示);(2)在数轴上是否存在点P,使得PA-PB=6?若存在,求出x的值;若不存在,请说明理由;
(3)当P为线段AB的中点时,点A,B,P同时开始在数轴上分别以每秒3个单位长度,每秒2个单位长度,每秒1个单位长度沿数轴正方向运动,试问经过几秒,PB=2PA?
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.

(1)写出你所学过的特殊的四边形中是勾股四边形的两种图形的名称 、 ;
(2)如图1,已知格点(小正方形的顶点)O0,0、A3,0、B0,4,点C 为图中所给方格中的另一个格点,四边形OACB 是以OA 、OB 为勾股边且对角线相等的勾股四边形,求点C 的坐标;
(3)如图2,将ABC( BC AB )绕顶点 B 按顺时针方向旋转60,得到DBE ,连接 AD 、DC ,四边形 ABCD 是勾股四边形,其中DC 、BC 为勾股边,求DCB 的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,四边形OABC 的边OC 、OA 分别与 x 轴、 y 轴重合, AOC 90,BCO 45, AB // OC , BC 6
,点C 的坐标为 9,0.

(1)求点 B 的坐标;
(2)若直线 DE 交四边形的对角线 BO 于点 D ,交 y 轴于点 E ,且OE 2 , OD 2BD ,求:
① ODE 的面积;
②点 D 的坐标.
(3)在(2)的条件下,坐标平面内是否存在点 P ,使以O 、E 、P 、D 为顶点的四边形是平行四边形? 若存在,请直接写出点 P 的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,梯形的上底为
+2
-10,下底为3
-5
-80,高为40.(
取3)(1)用式子表示图中阴影部分的面积;
(2)当
=10时,求阴影部分面积的值。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:
口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.先甲摸两次,每次摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分 ;得分高的获得入场券,如果得分相同,游戏重来.
(1)运用列表或画树状图求甲得1分的概率;
(2)这个游戏是否公平?请说明理由.
相关试题