【题目】已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.
(1)求证:△DOE≌△BOF.
(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.
![]()
参考答案:
【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.
【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);
(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.
试题解析:(1)∵在ABCD中,O为对角线BD的中点,
∴BO=DO,∠EDB=∠FBO,
在△EOD和△FOB中
,
∴△DOE≌△BOF(ASA);
(2)当∠DOE=90°时,四边形BFDE为菱形,
理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,
∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】李先生在2018年9月第14周星期五股市收盘时,以每股9元的价格买进某公司的股票1000股,在9月第3周的星期一至星期五,该股票每天收盘时每股的涨跌(单位:元)情况如下表:注:表中记录的数据为每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.

(1)请你判断在9月的第3周内,该股票价格收盘时,价格最高的是哪一天?
(2)在9月第3周内,求李先生购买的股票每股每天平均的收盘价格.(结果精确到百分位)
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下面的变形规律:
;
;
;….解答下面的问题:
(1)仿照上面的格式请写出
= ;(2)若n为正整数,请你猜想
= ;(3)基础应用:计算:
.(4)拓展应用1:解方程:
=2016(5)拓展应用2:计算:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校八年级640名学生在“计算机应用”培训前、后各参加了一次水平相同的测试,并以同一标准分成“不合格”、“合格”、“优秀”3个等级,为了解培训效果,用抽样调查的方式从中抽取32名学生的2次测试等级,并绘制成条形统计图:

(1)这32名学生经过培训,测试等级“不合格”的百分比比培训前减少了多少?
(2)估计该校八年级学生中,培训前、后等级为“合格”与“优秀”的学生各有多少名?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF,请你添加一个条件(不需再添加任何线段或字母),使之能推出四边形ABCD为平行四边形,请证明.你添加的条件是.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从乒乓球、羽毛球、篮球和排球四个方面调查了若干名学生,在还没有绘制成功的“折线统计图”与“扇形统计图”中,请你根据已提供的部分信息解答下列问题.

(1)在这次调查活动中,一共调查了名学生,并请补全统计图.
(2)“羽毛球”所在的扇形的圆心角是度.
(3)若该校有学生1200名,估计爱好乒乓球运动的约有多少名学生? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数a在数轴上表示的点在原点左侧,距离原点3个单位长度,数
在数轴上表示的点在原点右侧,距离原点4个单位长度,c和d互为倒数,m和n互为相反数,
是最大的负整数,求
.
相关试题