【题目】如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E、G、H分別在矩形ABCD的边AB、CD、DA上,AH=2.
![]()
(1)已知DG=6,求AE的长;
(2)已知DG=2,求证:四边形EFGH为正方形.
参考答案:
【答案】(1)AE=4
;(2)详见解析.
【解析】
(1)先根据矩形的性质,利用勾股定理列出表达式:HG2=DH2+DG2,HE2=AH2+AE2,再根据菱形的性质,得到等式DH2+DG2=AH2+AE2,最后计算AE的长;
(2)先根据已知条件,用HL判定Rt△DHG≌Rt△AEH,得到菱形的一组邻边相等,进而判定该菱形为正方形.
(1)解 ∵AD=6,AH=2,
∴DH=AD-AH=4,
∵四边形ABCD是矩形,
∴∠A=∠D=90°,
∴在Rt△DHG中,HG2=DH2+DG2,
在Rt△AEH中,HE2=AH2+AE2,
∵四边形EFGH是菱形,
∴HG=HE,
∴DH2+DG2=AH2+AE2,
即42+62=22+AE2,
∴AE=
=4
.
(2)证明∵AH=2,DG=2,
∴AH=DG,
∵四边形EFGH是菱形,
∴HG=HE,
在Rt△DHG和Rt△AEH中,
![]()
∴Rt△DHG≌Rt△AEH(HL),
∴∠DHG=∠AEH,
∵∠AEH+∠AHE=90°,
∴∠DHG+∠AHE=90°,
∴∠GHE=90°,
∵四边形EFGH是菱形,
∴四边形EFGH是正方形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD的长为( )

A. 2 B. 3 C. 4 D. 2

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.
(1)如图1,BE的延长线与AC边相交于点D,求证:EF=
(AC﹣AB);(2)如图2,请直接写出线段AB、AC、EF之间的数量关系。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3 m.
(1)求两面墙之间距离CE的大小;
(2)求点B到地面的垂直距离BC的大小.

-
科目: 来源: 题型:
查看答案和解析>>【题目】中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°,若
,请你利用这个图形解决下列问题:(1)试说明
;(2)如果大正方形的面积是10,小正方形的面积是2,求
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n次移动n格.则不停留棋子的格子的编号有_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知AB∥CD,那么图1中∠PAB、∠APC、∠PCD之间有什么数量关系?并说明理由.
如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE的平分线交于点F,请利用(1)的结论求图2中∠F的度数.

相关试题