【题目】已知
.
![]()
(1)如图1,
、
分别平分
、
.试说明:
;
(2)如图2,若
,
,
、
分别平分
、
,那么
(只要直接填上正确结论即可).
参考答案:
【答案】(1)见解析;(2) 49°.
【解析】
(1)首先作FG∥AB,根据直线AB∥CD,可得EF∥CD,据此推得∠ABF+∠CDF=∠BFD即可,再根据BF,DF分别平分∠ABE,∠CDE,推得∠ABF+∠CDF=
(∠ABE+∠CDE);然后由(1),可得∠BFD=∠ABF+∠CDF,∠BED=∠ABE+∠CDE,据此推得∠BFD=
∠BED;
(2) 连接BD,先求出∠MBD+∠NDB的度数,再求出∠PBM+∠PDN的度数,再利用三角形内角和定理即可解决;
(3)连接BD,先求出∠MBD+∠NDB的度数,再求出∠PBM+∠PDN的度数,再利用三角形内角和定理即可解决.
(1)如图1,作FG∥AB,
![]()
∵直线AB∥CD,
∴FG∥CD,
∴∠ABF=∠BFG,∠CDF=∠GFD,
∴∠ABF+∠CDF=∠BFG+∠GFD=∠BFD,
即∠ABF+∠CDF=∠BFD,
∵BF,DF分别平分∠ABE,∠CDE,
∴∠ABF=
∠ABE,∠CDF=
∠CDE,
∴∠ABF+∠CDF=
∠ABE+
∠CDE=
(∠ABE+∠CDE)
∴∠BFD=∠ABF+∠CDF=
(∠ABE+∠CDE)
∠BED=∠ABE+∠CDE,
∴∠BFD=
∠BED.
(2)连接BD,
![]()
∵∠BMN=133°,∠MND=145°,
∴∠MBD+∠NDB=360°-(133°+145°)=82°,
∵BP、DP分别平分∠ABM、∠NDC,
∴∠PBM=
∠ABM,∠PDN=
∠CDN,
∴∠PBM+∠PDN=
(180°-82°)=49°,
∴∠BPD=180°-(∠MBD+∠NDB)-(∠PBM+∠PDN)=49°.
故答案为49°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB,CD 相交于点O,∠AOD=3∠BOD+20°.
(1)求∠BOD的度数;
(2)以O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.
(1)求证:AD=DE;
(2)求∠DCE的度数;
(3)若BD=1,求AD,CD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线
与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,-3),点D与点C关于抛物线的对称轴对称.
(1)求抛物线的解析式及点D的坐标;
(2)点P是抛物线对称轴上的一动点,当△PAC的周长最小时,求出点P的坐标;
(3)若点Q在x轴正半轴上,且∠ADQ=∠DAC,求出点Q的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点
为直线
上一点,过点
作射线
,使
,将一把直角三角尺的直角顶点放在点
处,一边
在射线
上,另一边
在直线
的下方,其中
.
(1)将图1中的三角尺绕点
顺时针旋转至图2,使一边
在
的内部,且恰好平分
,求
的度数;(2)将图1中三角尺绕点
按每秒10的速度沿顺时针方向旋转一周,旋转过程中,在第 秒时,边
恰好与射线
平行;在第 秒时,直线
恰好平分锐角
.(3)将图1中的三角尺绕点
顺时针旋转至图3,使
在
的内部,请探究
与
之间的数量关系,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0),…,那么点A2019的坐标为( )

A. (1008,1)B. (1009,1)C. (1009,0)D. (1010,0)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为 .

相关试题