【题目】综合题![]()
(1)问题
如图1,点A为线段BC外一动点,且BC=a,AB=b.
填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)
(2)应用
点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.
①请找出图中与BE相等的线段,并说明理由;
②直接写出线段BE长的最大值.
(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90,请直接写出线段AM长的最大值及此时点P的坐标.
参考答案:
【答案】
(1)CB的延长线上,a+b
(2)解:①CD=BE,
理由:∵△ABD与△ACE是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC,
即∠CAD=∠EAB,
在△CAD与△EAB中,
,
∴△CAD≌△EAB(SAS),
∴CD=BE;
②∵线段BE长的最大值=线段CD的最大值,
∴由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,
∴最大值为BD+BC=AB+BC=4
(3)解:如图1,连接BM,
![]()
∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,
∴PN=PA=2,BN=AM,
∵A的坐标为(2,0),点B的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM长的最大值=线段BN长的最大值,
∴当N在线段BA的延长线时,线段BN取得最大值,
最大值=AB+AN,
∵AN=
AP=2
,
∴最大值为2
+3;
如图2,过P作PE⊥x轴于E,
![]()
∵△APN是等腰直角三角形,
∴PE=AE=
,
∴OE=BO﹣AB﹣AE=5﹣3﹣
=2﹣
,
∴P(2﹣
,
)
【解析】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,
∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,
故答案为:CB的延长线上,a+b;
(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论。
(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;
②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果。
(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得PN=PA,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值;过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论。
-
科目: 来源: 题型:
查看答案和解析>>【题目】在同一平面内利用一副三角板,可以直接画出的除三角板本身角的度数以外且小于平角的角度有___(例举四个即可).
-
科目: 来源: 题型:
查看答案和解析>>【题目】位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果m=2016,那么(m+1)2﹣m(m+1)= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】P(2m-4,1-2m)在y轴上,则m=__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】上周六上午
点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离
(千米)与他们路途所用的时间
(时)之间的函数图象,请根据以上信息,解答下列问题:
(1)求直线
所对应的函数关系式;
(2)已知小颖一家出服务区后,行驶
分钟时,距姥姥家还有
千米,问小颖一家当天几点到达姥姥家? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线AB与函数y=
(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=
OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;
(2)求△ABC的面积.

相关试题