【题目】如图,已知△ABC中,∠B=90 ,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)出发2秒后,求线段PQ的长?
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB是等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间?
![]()
参考答案:
【答案】(1)
; (2)t=83;(3)当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.
【解析】(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;
(2)设出发t秒后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;
(3)当点Q在CA上运动上,能使△BCQ成为等腰三角形的运动时间有三种情况:
①当CQ=BQ时(图1)则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;
②当CQ=BC时(图2),则BC+CQ=12,易求得t;
③当BC=BQ时(图3),过B点作BE⊥AC于点E,则求得BE、CE,即可得出t.
解:(1)BQ=2×2=4cm,BP=ABAP=82×1=6cm,
∵∠B=90°,
PQ=
;
(2)BQ=2t,
BP=8t,
2t=8t,
解得:t=83;
(3)①当CQ=BQ时(图1),
![]()
则∠C=∠CBQ,
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°,
∠A+∠C=90°,
∴∠A=∠ABQ,
∴BQ=AQ,
∴CQ=AQ=5,
∴BC+CQ=11,
∴t=11÷2=5.5秒.
②当CQ=BC时(如图2),
![]()
则BC+CQ=12
∴t=12÷2=6秒
③当BC=BQ时(如图3),过B点作BE⊥AC于点E,
![]()
则BE=
,
所以CE=BC2BE2,
故CQ=2CE=7.2,
所以BC+CQ=13.2,
∴t=13.2÷2=6.6秒.
由上可知,当t为5.5秒或6秒或6.6秒时,
△BCQ为等腰三角形.
“点睛”本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质,注意分类讨论思想的应用.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.

(1)拼成的正方形的面积为 ,边长为 .
(2)如图2,以数轴的单位长度的线段为边作一个直角三角形,以数轴上表示 的﹣1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是 .
(3)如图3,网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,BD为△ABC的的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是( )

A.①②③ B.①③④ C.①②④ D.①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:
(1)2xy-x2-y2;
(2)2ax3-8ax.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:△ABE≌△CBF;
(2)若
,AE=2,求△ACF的周长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校开展了“环保知识”抢答比赛活动,一共分为五个小组,规定答对一题加50分,答错一题扣10分,活动结束时,记分员公布了各个小组的情况得分如下:
1组
2组
3组
4组
5组
100
150
﹣400
350
﹣100
(1)第一名超出第二名多少分?
(2)第一名超出第五名多少分?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A. “打开电视机,正在播放《新闻联播》”是必然事件
B. “随机抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件
C. 一组数据的中位数可能有两个
D. 一组数据的波动越大,方差越小
相关试题