【题目】如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=( )![]()
A.4
B.5
C.4 ![]()
D.6
参考答案:
【答案】B
【解析】如图所示:取CE的中点G,连接FG.
![]()
由旋转的性质可知:CE=BC=4,CD=AC=6,
∴AE=2,GE=2.
∴AG=4.
∵点G为CE的中,点F为ED的中点,
∴GF=
CD=3,GF∥CD.
又∵CD⊥AC,
∴FG⊥AC.
在Rt△AGF中,依据勾股定理可知AF=
=5.
所以答案是:B.
【考点精析】通过灵活运用勾股定理的概念和旋转的性质,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】菱形ABCD中,两条对角线AC,BD相交于点O,∠MON+∠BCD=180°,∠MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF.
(1)如图1,当∠ABC=90°时,△OEF的形状是;
(2)如图2,当∠ABC=60°时,请判断△OEF的形状,并说明理由;
(3)在(1)的条件下,将∠MON的顶点移到AO的中点O′处,∠MO′N绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当BC=4,且
=
时,直接写出线段CE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=
x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).
(1)求抛物线F1所表示的二次函数的表达式及顶点Q的坐标;
(2)在抛物线上是否存在点P,使△BPC的内心在y轴上,若存在,求出点P的坐标,若不存在写出理由;
(3)直线y=kx﹣6与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读与理解:
如图,一只甲虫在5×5的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右) 爬行记为“+”,向下(或向左) 爬行记为“﹣”,并且第一个数表示左右方向,第二个数表示上下方向.
例如:从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2).
思考与应用:
(1)图中A→C( , ),B→C( , ),D→A( , )
(2)若甲虫从A到P的行走路线依次为:(+3,+2)→(+1,+3)→(+1,﹣2),请在图中标出P的位置.
(3)若甲虫的行走路线为A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),请计算该甲虫走过的总路程.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,转盘被划分成4个相同的小扇形,并分别标上数字1,2,3,4,分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中M点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,认为指向左侧扇形的数字,则点M落在直线y=x的下方的概率为( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线L:y=﹣
(x+t)(x﹣t+4)与x轴只有一个交点,则抛物线L与x轴的交点坐标是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AD是△ABC的高,∠BAC=60°,BD=2CD=2,试求AB的长.

相关试题