【题目】【问题背景】
在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图1中线段BE、EF、FD之间的数量关系.
![]()
【初步探索】
小亮同学认为:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,则可得到 BE、EF、FD之间的数量关系是 .
【探索延伸】
在四边形ABCD中如图2,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,∠EAF=
∠BAD,上述结论是否任然成立?说明理由.
【结论运用】
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角(∠EOF)为70°,试求此时两舰艇之间的距离.
参考答案:
【答案】初步探索:EF=BE+FD;
探索延伸:结论仍然成立,理由见解析;
结论运用:此时两舰艇之间的距离是210海里.
【解析】
试题分析:探索延伸:延长FD到G,使DG=BE,连接AG,证明△ABE≌△ADG和△AEF≌△GAF,得到答案;
结论运用:连接EF,延长AE、BF交于点C,得到EF=AE+BF,根据距离、速度和时间的关系计算即可.
解:初步探索:EF=BE+FD,
故答案为:EF=BE+FD,
探索延伸:结论仍然成立,
证明:如图2,延长FD到G,使DG=BE,连接AG,
∵∠B+∠ADC=180°,∠ADG+∠ADC=180°
∴∠B=∠ADG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG,
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=
∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△GAF,
∴EF=FG,
∴FG=DG+FD=BE+DF;
结论运用:解:如图3,连接EF,延长AE、BF交于点C,
∵∠AOB=30°+90°+(90°﹣70°)=140°,
∠EOF=70°,
∴∠EOF=
∠AOB,
∵OA=OB,
∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,
∴符合探索延伸中的条件
∴结论EF=AE+BF成立,
即EF=1.5×(60+80)=210海里,
答:此时两舰艇之间的距离是210海里.
![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列因式分解正确的是( )
A. x2+2x+1=x(x+2)+1 B. (x2-4)x=x3-4x C. ax+bx=(a+b)x D. m2-2mn+n2=(m+n)2
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个等腰三角形的两边是7和3,则该三角形的周长是( )
A. 13 B. 17 C. 17或13 D. 7或3
-
科目: 来源: 题型:
查看答案和解析>>【题目】某种商品的标价是132元,若以标价的9折销售,仍可获利润10%,则该商品的进价为( )
A. 105元 B. 108元 C. 110元 D. 118元
-
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=ax+b的图象与反比例函数y=
的图象交于P(﹣2,1)、Q(1,n)两点,试求此反比例函数和一次函数的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(8,8),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.

(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;判断线段HG、OH、BG的数量关系,并说明理由;
(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=
,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是( )
A.①②④ B.③④ C.①③④ D.①②
相关试题