【题目】对x,y定义一种新运算F,规定:F(x,y)=(mx+ny)(3x﹣y)(其中m,n均为非零常数).例如:F(1,1)=2m+2n,F(﹣1,0)=3m.
(1)已知F(1,﹣1)=﹣8,F(1,2)=13.
①求m,n的值;
②关于a的不等式组
,求a的取值范围;
(2)当x2≠y2时,F(x,y)=F(y,x)对任意有理数x,y都成立,请直接写出m,n满足的关系式.
参考答案:
【答案】(1)①m=3,n=5;②不等式组的无解;(2)n=-3m
【解析】
(1)①根据题目定义的运算列出方程组,即可求出
的值.
②根据定义的新运算列出不等式组,解不等式组即可.
(2)根据定义的新运算列出
的表达式,对式子进行化简即可求出
m,n满足的关系式.
(1)①根据题意得:
即
即
解得:
②根据题意得:
由
解不等式①得:
解不等式②得:
故原不等式组的无解;
(2)由
得
整理得:
∵当
时,
对任意有理数
都成立,
∴
即![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)通过计算补全条形统计图;
(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF,连接CF.
(1)若AB=AC,∠BAC=90°
①当点D在线段BC上时(与点B不重合),试探究CF与BD的数量关系和位置关系,并说明理由.
②当点D在线段BC的延长线上时,①中的结论是否仍然成立,请在图②中画出相应图形并直接写出你的猜想.
(2)如图③,若AB≠AC,∠BAC≠90°,∠BCA=45°,点D在线段BC上运动,试探究CF与BC的位置关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
中,
,
于
,
平分
,且
于
,与
相交于点
,
于
,交
于
,下列结论:①
;②
;③
;④
.其中正确的是( )
A.①②B.①③C.①②③D.①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AC=BC,D是AB中点,CE∥AB,CE=
AB.(1)求证:四边形CDBE是矩形.
(2)若AC=5,CD=3,F是BC上一点,且DF⊥BC,求DF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正确的是________(填序号)

相关试题