【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若BD=2
,BF=2,求阴影部分的面积(结果保留π).
![]()
参考答案:
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;
(2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,求出圆心角的度数,直角三角形ODB的面积减去扇形DOF面积即可确定出阴影部分面积.
试题解析:(1)BC与⊙O相切.
证明:连接OD.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.
(2)设OF=OD=x,则OB=OF+BF=x+2,由勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=
OB,∴∠B=30°,∴∠DOB=60°,∴S扇形AOB=
=
,则阴影部分的面积为S△ODB﹣S扇形DOF=
×2×
﹣
=
.故阴影部分的面积为
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点(5,3)所在的象限是( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
-
科目: 来源: 题型:
查看答案和解析>>【题目】把一根长为120cm的木棍锯成两段,若使其中一段的长比另一段的2倍少3cm,则锯出的木棍的长不可能为( )
A.80cm
B.41cm
C.79cm
D.41cm或79cm -
科目: 来源: 题型:
查看答案和解析>>【题目】某商店把一种商品按标价的八折出售,获得的利润是进价的20%,该商品的标价为每件288元,则该商品的进价为每件元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2012年月退休金为1500元,2014年达到2160元.设李师傅的月退休金从2012年到2014年年平均增长率为x,则可列方程为( )
A.1500(1+x)2=2160
B.1500(1+x)2=2060
C.1500+1500(1+x)+1500(1+x)2=2160
D.1500(1+x)=2160 -
科目: 来源: 题型:
查看答案和解析>>【题目】下列几种说法中,正确的是( )
A.有理数的绝对值一定比0大
B.有理数的相反数一定比0小
C.互为倒数的两个数的积为1
D.两个互为相反的数(0除外)的商是0 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.
(1)求该二次函数的解析式;
(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;
(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.

相关试题