【题目】如图在平面直角坐标系中,O 是坐标原点,长方形 OACB 的顶点 A,B 分别在 x,y 轴上,已知 OA=3, 点 D 为 y 轴上一点,其坐标为(0,1),CD=5,点 P 从点 A 出发以每秒 1 个单位的速度沿线段 A﹣C﹣B 的方向运动,当点 P 与点 B 重合时停止运动,运动时间为 t 秒
(1)求 B,C 两点坐标;
(2)①求△OPD 的面积 S 关于 t 的函数关系式;
②当点 D 关于 OP 的对称点 E 落在 x 轴上时,求点 E 的坐标;
(3)在(2)②情况下,直线 OP 上求一点 F,使 FE+FA 最小.
![]()
参考答案:
【答案】(1) B(0,5),C(3,5);(2)①S=-
t+4(t≥0);②(1,10);(3)见解析.
【解析】
(1)由四边形OACB是矩形,得到BC=OA=3,在Rt△BCD中,由勾股定理得到BD=
=4,OB=5,从而求得点的坐标;
(2)①当点P在AC上时,OD=1,BC=3,S=
,当点在BC上时,OD=1,BP=5+3-t=8-t,得到S=
×1×(8-t)=-
t+4;
②当点D关于OP的对称点落在x轴上时,得到点D的对称点是(1,0),求得E(1,0);
(3)由点D、E关于OP对称,连接AD交OP于F,找到点F,从而确定AD的长度就是AF+EF的最小值,在Rt△AOD中,由勾股定理求得AD=
,即AF+EF的最小值=
.
(1)如图1,
![]()
∵四边形OACB是矩形,
∴BC=OA=3,
在Rt△BCD中,∵CD=5,BC=3,
∴BD=
=4,
∴OB=5,
∴B(0,5),C(3,5);
(2)①当点P在AC上时,OD=1,BC=3,
∴S=
,
当点在BC上时,OD=1,BP=5+3-t=8-t,
∴S=
×1×(8-t)=-
t+4;(t≥0)
②当点D关于OP的对称点落在x轴上时,点D的对称点是(1,0),
∴E(1,0);
(3)如图2
![]()
∵点D、E关于OP对称,连接AD交OP于F,
则AD的长度就是AF+EF的最小值,则点F即为所求.
-
科目: 来源: 题型:
查看答案和解析>>【题目】直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B 两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B的坐标.
(2)求直线BC的解析式.
(3)直线 EF 的解析式为y=x,直线EF交AB于点E,交BC于点 F,求证:S△EBO=S△FBO.

-
科目: 来源: 题型:
查看答案和解析>>【题目】随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:

请依据统计结果回答下列问题:
(1)本次调查中,一共调查了 位好友.
(2)已知A类好友人数是D类好友人数的5倍.
①请补全条形图;
②扇形图中,“A”对应扇形的圆心角为 度.
③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则cos∠EFG的值为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
,从下列条件中补充一个条件后,仍不能判定
的是( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.

请根据图中信息解决下列问题:
(1)共有多少名同学参与问卷调查;
(2)补全条形统计图和扇形统计图;
(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的不等式
>
x﹣1.(1)当m=1时,求该不等式的解集;
(2)m取何值时,该不等式有解,并求出解集.
相关试题