【题目】(列方程(组)及不等式解应用题)
春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
参考答案:
【答案】(1)甲种商品每件的进价为30元,乙种商品每件的进价为70元;(2)该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.
【解析】
试题分析:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,根据“购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元”可列出关于x、y的二元一次方程组,解方程组即可得出两种商品的单价;
(2)设该商场购进甲种商品m件,则购进乙种商品(100﹣m)件,根据“甲种商品的数量不少于乙种商品数量的4倍”可列出关于m的一元一次不等式,解不等式可得出m的取值范围,再设卖完A、B两种商品商场的利润为w,根据“总利润=甲商品单个利润×数量+乙商品单个利润×数量”即可得出w关于m的一次函数关系上,根据一次函数的性质结合m的取值范围即可解决最值问题.
试题解析:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:
,解得:
.
答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.
(2)设该商场购进甲种商品m件,则购进乙种商品(100﹣m)件,由已知得:m≥4(100﹣m),解得:m≥80.
设卖完A、B两种商品商场的利润为w,则w=(40﹣30)m+(90﹣70)(100﹣m)=﹣10m+2000,∴当m=80时,w取最大值,最大利润为1200元.
故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形网格上有一个△DEF .
①作△DEF关于直线HG的轴对称图形;
②作△DEF的EF边上的高;
③若网格上的最小正方形边长为1,求△DEF的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)12a+5b﹣8a﹣7b
(2)5a2b﹣[2ab2﹣3(ab2﹣a2b)]. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】调查显示,2016年“两会”期间,通过手机等移动端设备对“两会”相关话题的浏览量高达115 000 000次.将115 000 000 用科学记数法表示应为( )
A.1.15×109
B.11.5×107
C.1.15×108
D.1.158 -
科目: 来源: 题型:
查看答案和解析>>【题目】完成下列证明过程. 如图,在△ABC中,∠B=∠C,D、E、F分别在AB、BC、AC上,且BD=CE,∠DEF=∠B,说明ED=EF.
解:∵∠DEC=∠B+∠BDE (),
又∵∠DEF=∠B(已知),
∴∠=∠(等式性质).
在△EBD与△FCE中,
∠=∠(已证),
=(已知),
∠B=∠C(已知),
∴△EBD≌△FCE().
∴ED=EF ().
-
科目: 来源: 题型:
查看答案和解析>>【题目】若∠AOB=45°,P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1 , P2 , 连接OP1 , OP2 , 则下列结论正确的是( )

A.OP1⊥OP2
B.OP1=OP2
C.OP1≠OP2
D.OP1⊥OP2且OP1=OP2
相关试题